

The Frequency of Binary Companions Around KELT Planet Host Stars

Dr. Carl Coker, NASA Postdoctoral Program Fellow, NASA JPL

September 18, 2017

© 2017. California Institute of Technology. Government sponsorship acknowledged.

Background

- Hot Jupiter formation mechanism still debated
 - Probably formed beyond snow line
 - How do they migrate inwards?
- Three main potential methods
 - Type II/other disk migration
 - Dynamical scattering
 - Kozai-Lidov/binary star interactions
 - Conceptually easy test: look for binary companions to hot Jupiter hosts

Survey Design

- High resolution imaging
 - Speckle interferometry (Differential Speckle Survey Instrument on WIYN 3.5-meter)
 - Adaptive optics (Large Binocular Telescope Interferometer/ LMIRCam)
- Surveyed 79 stars
 - 12 KELT (Kilodegree Extremely Little Telescope) planet hosts visible in Northern Hemisphere
 - 67 comparison stars rejected by KELT
 - Selected on brightness and spectral type
 - Match KELT planet hosts (A & F stars/above 6200 K)
 - Close to true statistical control (hot Jupiters rare)

DSSI Sample Observation

DSSI Results Summary

- Four comparison sample binaries observed (fifth rejected as contaminant)
 - Two previously unknown
- Companion fraction of 8.0^{+3.0}_{-2.4}% (4/50)
 - 7.8±0.4% expected at WIYN (Horch et al. 2014)
 - Consistent with field FGK stars
- No constraints on hot Jupiter formation from DSSI data

LBTI Typical Performance (Good Seeing)

LBTI Results Summary

- Nine comparison sample candidate binaries observed
 - Two rejected as chance alignments
 - Six previously unknown companions
 - 36.8±6.3% companion fraction (9/19)
- No new KELT planet host companions observed
 - 50±8.1% companion fraction (all imaging sources; 9/18)
- 1.6σ excess
 - Binary companions likely slightly favor hot Jupiters

Conclusions and Future Work

- Hot Jupiter hosts have 1.6σ excess companion fraction
 - Binary stars likely favor hot Jupiter formation
 - Kozai/binary star interactions likely not dominant hot Jupiter formation mechanism
- Angular differential imaging
- Investigate spin-orbit misalignment
 - Are hot Jupiters with companions more likely to be misaligned?
- Compare multiplicity of hot Jupiter hosts to multiplicity of other planet hosts

High-Dispersion Coronagraphy

- Combine high-resolution spectrograph with high-contrast coronagraph to find exoEarths
- Benefits:
 - Higher background tolerance/lower contrast req.
 - Could trade contrast for throughput/bandpass, etc.
 - May lower cost of instrument
- Problems:
 - Detector noise/real estate
 - Photon noise (not enough integration time in the world...)

Goals

- Answer questions:
 - What exactly is gained with higher resolution?
 - What does instrument look like? IFU viable?
 - Can noise problems be solved? Hard barriers?
 - What do tradeoffs look like? How do they affect yield?
- Focused primarily on space-based instruments (HabEx/LUVOIR)