The Era of "Faint" Debris Disks.

Rahul I. Patel S@DarthPatel

ExSoCal 2017 Current Collaborators:

C. Beichman, B. Menneson, S. Metchev, C. Chen, P. Arriaga, M. Fitzgerald, M. Millar-Blanchaer (+ GPIES team), G. Bryden, M. Ygouf, T. Meshkat, D. Mawet, et al.

I like debris disks and I cannot lie.

Studying the architecture of debris disks places the Solar System in context.

Most resolved disks have bright IR excesses.

Faintest disks will hinder and help exoplanetology.

Simulated WFIRST coronagraph image of observations of 47 Ursa Majoris by John Krist, JPL

- 10 hr exposure
- 525-580 nm

It's wise to look for debris disks with WISE... badoonsh.

WISE is back... alright!

• Accurately measuring empirical photospheric colors.

Leverage contemporaneous WISE photometry

Patel+2014, ApJS, 212, 10 Patel+2017, AJ, 153, 54

• Accurately measuring empirical photospheric colors.

Leverage contemporaneous WISE photometry

Correct photometric saturation

• Include brighter (closer) stars previously "inaccessible" in WISE

Patel+2014, ApJS, 212, 10 Patel+2017, AJ, 153, 54

• Accurately measuring empirical photospheric colors.

Leverage contemporaneous WISE photometry

• Correct photometric saturation

- Include brighter (closer) stars previously "inaccessible" in WISE
- Verification of Excesses
 - Weighted combination of WISE colors to verify excess
 - Statistical centroid analysis to identify unresolved contaminants

Patel+2014, ApJS, 212, 10 Patel+2017, AJ, 153, 54

I'll tell you what I want, what I really really want...

Plot by Geoff Bryden Unresolved data from Chen+,2014 (IRS detections)

... more targets for future missions.

Plot by Geoff Bryden Unresolved data from Chen+,2014 (IRS detections) WISE detections from Patel+2014,2017

Wrap Up.

➢ Fainter disks will be accessible to missions like WFIRST

- Dust will both impede and aid in study of these planetary systems
- W3 and W4 excesses can be used to identify warm disks overlooked by past studies.
- Careful consideration of photospheric colors & unseen contamination leads to less false-positives and "fainter" disks.

Other ongoing work:

- WFIRST CGI speckle stability and post-processing analysis
- High-contrast imaging of nearby disks and young stars here at Caltech
- Follow-up imaging and analysis of interesting K2 candidate systems