The Origin of the Heavy Element Content Trend in Giant Planets

Yasuhiro Hasegawa

Jet Propulsion Laboratory, California Institute of Technology

in collaboration with

Geoff Bryden (JPL/Caltech), Masahiro Ikoma (Tokyo Univ), Gautam Vasisht (JPL/Caltech), Mark Swain (JPL/Caltech)

Estimate of the heavy element mass in observed exoplanets

e.g., Guillot et al 2006; Miller & Fortney 2011; Thorngren et al 2016

Distribute heavy elements in cores and envelopes, and compute the radius evolution of planets Target selection: relatively cool close-in exoplanets

Results of Thorngren et al 2016 (T16)

 $M_Z \propto M_p^{\Gamma}$ with $\Gamma = 0.61 \pm 0.08 \simeq 3/5$ $\frac{Z_p}{Z_s} = \frac{M_Z}{M_p Z_s} \propto M_p^{\beta}$ with $\beta = -0.45 \pm 0.09 \simeq -2/5$ $\Gamma - 1 \simeq \beta \implies M_Z$ and M_p are almost independent of Z_s M_Z : the total heavy element mass in planets with the mass of M_p

 Z_s : the metallicity of the host star

Planet Formation via Core Accretion: Accretion of Gas and Solids

Planet Formation via Core Accretion: Accretion of Gas and Solids

$$\begin{split} M_p &= M_{XY} + M_Z \\ M_Z &= M_{core} + M_{pl} + M_{pe} + M_{Z,gas} \\ \end{split} \\ \end{split} \\ \vspace{-2mm} \begin{tabular}{l} \label{eq:main_state} \\ \vspace{-2mm} \label{eq:main_state} \\ \vspace{-2mm} \begin{tabular}{l} \label{eq:main_state} \\ \vspace{-2mm} \begin{tabular}{l} \label{eq:main_state} \\ \vspace{-2mm} \label{eq:main_state} \\ \vspace{-2mm} \begin{tabular}{l} \label{eq:main_state} \\ \vspace{-2mm} \label{eq:main_state} \\ \vspace{-2mm} \begin{tabular}{l} \label{eq:main_state} \\ \vspace{-2mm} \label{eq:main_state} \\ \vspace{-2mm} \label{eq:main_state} \\ space{-2mm} \label{eq:main_state} \\ space{-2mm} \label{eq:main_state} \\ space{-2mm} \label{eq:main_state} \\ space{-2mm} \begin{tabular}{l} \label{eq:main_state} \\ space{-2mm} \label{eq:main_state} \\ space{-2mm} \begin{tabular}{l} \label{eq:main_state} \\ space{-2mm} \begin{tabular} \label{eq:main_state} \\ space{-2mm} \begin{tabu$$

dust in gas

Power-law index	т16	M_{core}	M_{pl} (w/o Gap)	M_{pl} (w/ Gap)	M_{pe}
$\Gamma(M_Z \propto M_p^{\Gamma})$	3/5	Ο	1/3	3/5	1/3
$eta(Z_p \propto M_p^{eta})$	-2/5	-1	-2/3	-2/5	-2/3

Power-law index	T16	M_{core}	M_{pl} (w/o Gap)	M_{pl} (w/ Gap)	M_{pe}
$\Gamma(M_Z \propto M_p^{\Gamma})$	3/5	0	1/3	3/5	1/3
$\beta(Z_p \propto M_p^{\beta})$	-2/5	-1	-2/3	-2/5	-2/3

Planets accreted solids from gapped planetesimal disks at the final formation stage

Power-law index	T16	M_{core}	M_{pl} (w/o Gap)	M_{pl} (w/ Gap)	M_{pe}
$\Gamma(M_Z \propto M_p^{\Gamma})$	3/5	0	1/3	3/5	1/3
$\beta(Z_p \propto M_p^{\beta})$	-2/5	-1	-2/3	-2/5	-2/3

Comparison with previous studies

Our model can reproduce the results of Mordasini

Power-law index	T16	M_{core}	M_{pl} (w/o Gap)	M_{pl} (w/ Gap)	M_{pe}
$\Gamma(M_Z \propto M_p^{\Gamma})$	3/5	0	1/3	3/5	1/3
$\beta(Z_p \propto M_p^{\beta})$	-2/5	-1	-2/3	-2/5	-2/3

Summary Hasegawa et al. 2018, ApJ in press (arXiv:1807.05305)

• Observed warm Jupiters tend to have correlations: $M_Z \propto M_p^{3/5}$ $\frac{Z_p}{Z_s} = \frac{M_Z}{M_p} \frac{1}{Z_s} \propto M_p^{-2/5}$

• We show that accretion of solids from **gapped** planetesimal disks can reproduce the above trends better

- Our results indicate that core formation, pebble accretion, and dust accretion accompanying gas accretion are not important
- Our analysis can **reproduce** the results of detailed population synthesis calculations (Mordasini et al 2014)
- Our results suggest that evolution of atmospheric metallicities can be explored in the $Z_p M_p$ diagram