

RV Measurements of Directly Imaged Brown Dwarf GQ Lup B to Search for Exomoons

Katelyn Horstman^{1,4}, JB Ruffio², Dimitri Mawet^{1,3} ¹Caltech Exoplanet Technology Lab, ²UC San Diego, ³JPL, ⁴NSF Graduate Research Fellow

Why are moons important?

- Exoplanet formation
- Circumplanetary disks
- New places to search for habitability

Few exomoon candidates, but none confirmed

Transits (Teachey et al. 2018; **Kipping et al. 2022**)

High contrast imaging (Lazzoni et al. 2020)

Exomoons

KPIC

GQ Lup B

Future Work

2

Exomoon Formation Pathways

- Gravitational instabilities
- Capture
- Collisions
- Circumplanetary disk (CPD)
 - CPD dust mass ~ 10^{-4}
 - Moonlets form from solids, but can also accrete gas
 - \circ Larger planets may form even larger moons: $m \propto M^{3/2}$

(Batygin, K., & Morbidelli, A. 2020)

Benisity et. al 2021

RV Measurements of Directly Imaged Planets

Exomoons

RV Measurements of Directly Imaged Planets

GQ Lupi B

- Measured cavity in CPD (Stolker et al 2021)
- Likelihood to harbor proportionally more massive moons
- Properties = high precision RVs

Neuhäuser, Guenther, Wuchterl, Mugrauer, Bedalov, Hauschildt ESO VLT NACO June 2004

Α

b

GQ Lup B

- 180 s exposures
- 7 epochs (11 total)
- ~19.5 hours of monitoring (~22.25 total)

 RV precision 400-1000 m/s (best/median)

Exomoons

- 180 s exposures
- 6 epochs (10 total)
- ~18 hours of monitoring (~20.75 total)
- RV precision 400-1000 m/s (best/median)

Exomoons

Period (days)

Exomoons

Future Work

Summary:

- First dedicated RV campaign to look for exomoons
- KPIC sensitive to 0.8-4.7% mass ratios within the cavity
 - No exomoons with mass ratio > $\sim 10^{-2}$

Questions?

Contact me: khorstma@astro.caltech.edu khorstman.github.io

KPIC

Future and current work:

- Ongoing exomoon survey
- Simulations of CPD cavity
- Develop code to extend to other instruments (HISPEC/MODHIS)

Additional Slides

Exomoon Formation in the CPD

Moon Mass Scaling Relation

- Equate the accretion and migration timescales
 - Non-trivial and non-linear dependence on mass

$$\mathcal{T}_{accr} = \frac{4 \bar{\rho} \left(\mathcal{R} - \mathcal{R}_{0}\right)}{\kappa \Lambda \mathcal{Z} \left(1 + \Theta\right) \Sigma \Omega}.$$

$$\mathcal{T}_{mig} = \frac{\gamma}{\Omega} \frac{M_{\circ}}{\mathcal{M}} \frac{M_{\circ}}{\Sigma r^{2}} \left(\frac{h}{r}\right)^{2},$$

$$(41)$$

$$\mathcal{R}^{3} \left(\mathcal{R} - \mathcal{R}_{0}\right) \sim \frac{3 \kappa \gamma}{16 \pi} \left(\frac{h M_{\circ}}{\bar{\rho} r^{2}}\right)^{2} \mathcal{Z} \Lambda \left(1 + \Theta\right).$$

$$(43)$$

Transmissive optics can cause light interference

- 1. PyWVS Pickoff Dichroic
- 1. TC Pickoff Dichroic
- 1. NIRSPEC Entrance Window

Dan Echeverri and KPIC Team

Exomoons

KPIC

GQ Lup B

Future Work

Model fit to AO stellar spectrum and telluric spectrum

Model fit to AO stellar spectrum and telluric spectrum

FAP: False Alarm Probability

Detection statistic S

Delta(BIC): Bayesian Information Criterion

 $\operatorname{BIC} = \ln(n)k - 2\ln(\hat{L}).$

 \hat{L} is the maximized value of the likelihood function of the model $m{n}$ is the number of data points

k is the number of free parameters to be estimated

 TABLE 6

 Grades of Evidence Corresponding to Values of the Bayes Factor for M_2

 Against M_1 , the BIC Difference and the Posterior Probability of M_2

BIC Difference	Bayes Factor	$p(M_2 D)(\%)$	Evidence
0-2	13	50-75	Weak
2-6	3-20	75-95	Positive
6-10	20-150	95-99	Strong
>10	>150	>99	Very strong

HR 7672B

RV time series for HR 7672 B using KPIC data

Existing code already developed to analyze HR 7672 RV time series

MODHIS/TMT Simulations

With a single two hour exposure, can reach sensitivity of 1-10 m/s

Current directly imaged planet magnitudes

 10^{0}

For more massive planets and brown dwarfs, RV sensitivity reached to look for M_{Moon}/M_{BD}) sin i solar system-like exomoons

> Holds for all young systems

Background & Context

Exomoon Formation Pathways

• Disk instabilities

- Mass ratios ~1
- Thought to form in bound systems as often as ~45% when orbiting a host star (Burgasser, et al., 2005)

Potentially Habitable Exomoons

• Atmosphere retention

- Flux received by the exomoon from planet/star
- Tidal heating of the exomoon
- Possible protection by the planet's magnetosphere
- Satellites on the order of 0.1-0.5 Mass Earth formed in CPD/captured could have a surface temperature compatible with liquid water Heller et al. (2014)
 - Larger planets may provide more protection (Heller & Zuluaga 2013).
 - Planetary illumination from Super Jupiters on exomoons with smaller separations and eccentric orbits can drive a 174 runaway greenhouse effect (Heller & Barnes 2015)

University of Rochester

Brown Dwarf RV Jitter

- $\Delta_{\rm RV} \approx F_{\rm spot} \times v \sin i$ (Vanderburg 2018)
- Typical planet vsini ~10-25 km/s (Snellen et al. 2014)
- Error on order of ~100 m/s
- Should be able to filter out signal (Vanderburg et al. 2016, 2018) and still obtain moon signal
- Look for slower rotating planets/planets with less clouds

RVsearch

- Likelihood periodograms to iteratively detect planet candidates (Rosenthal et al. 2021)
- Fits a detection threshold to the likelihood periodogram
 - Power law noise model (Howard & Fulton 2016)
- Injection-recovery tests

Relevant Physics/Math

• Kepler's 3rd Law:
$$P^2 = \frac{4\pi^2 a^3}{GM}$$
.

• RV semi-amplitude:
$$\frac{K}{\text{ms}^{-1}} = 203 \left(\frac{P}{\text{days}}\right)^{-1/3} \cdot \frac{(M_p/M_{\text{Jup}})\sin i}{((M_*/M_{\odot}) + 9.548 \times 10^{-4} (M_p/M_{\text{Jup}}))^{2/3}} \cdot \frac{1}{\sqrt{1 - e^2}}$$

• Roche limit:
$$d = R_m \left(2 \frac{M_M}{M_m}\right)^{rac{1}{3}}$$

• Hill sphere:
$$r_{
m H} pprox a \sqrt[3]{rac{m}{3M}}.$$

Relevant Physics/Math

• Doppler formula:
$$\frac{\Delta\lambda}{\lambda} = v_r/c$$

• Resolution of KPIC: 1 km/s

• Astrometric signal:
$$\theta = \frac{m_s}{M_P} \frac{a_s}{d} \operatorname{arcsec}$$

• RV err = max(resolution,vsini)/CCF_SNR