Imaging Planet Formation on Solar System Scales

Christina Vides¹, Steph Sallum¹, Josh Eisner², Andy Skemer³, and Ruth Murray-Clay³

1. University Of California, Irvine 2. University of Arizona 3. University of California, Santa Cruz

ExSoCal 2023

Why Should We Observe Planet Formation?

Orbit Semi-Major Axis [au]

Observations of Protoplanetary Disks: The Birthplace of Planets

DSHARP Survey

- Mapped the 1.25 mm continuum of protoplanetary disks
- Spatial Resolution of ~5 au
- Found rings, gaps, and spiral arms/ warping driven by planet formation

Transition Disks: Further Evidence of Ongoing Planet Formation

Observations of Protoplanets within Transition Disks

1.0 arm-like outer structure disk edge 0.5 Δ DEC (") 0.0 planet c -0.5 planet b -1.0 -0.5 0.0 0.5 1.0 -1.0 Δ RA (") Juliard + 2022

PDS 70

Wagner + 2023

MWC 758

${\rm H}\alpha$ Differential Imagery Companion Candidates

LkCa 15 H α Image

Sallum+2023

- LkCa 15 b was detected in 2015, but was not recovered in 2016.
- Long time baseline monitoring shows that the position angle evolution needs to be explained by a dynamic disk.
- Hα surveys can access close-in separations, but can be limited by extinction.

The Spectral Energy Distributions of Protoplanets

Rapidly accreting protoplanets are most luminous between $\sim 2 \ \mu m$ -5 μm

Limitations of Observing Planet Formation on Solar System Scales

Distance to nearest star forming regions $\gtrsim 100 \text{ pc}$

D = 10 m

Insufficient angular resolution with conventional imaging techniques

Non-Redundant Masking (NRM): A Tool for **Observing Planet Formation on Solar System Scales**

Mask Interferogram FT (Interferogram)

Observables:

- Squared visibilities (V²s)
- Closure phases (CPs)

NRM provides moderate contrast at angular separations down to and within the diffraction limit.

Comparison of NRM to Traditional Imaging Methods

Direct Imaging Survey of Transition Disks with Keck2/NIRC2 and NRM

Survey Goals

- Detect and characterize rapidly accreting giant protoplanets at solar-system scales in a significant sample of transition disks
- Characterize disk structure and dynamical interactions
- Place statistical constraints on the underlying protoplanet population and timescales under which they form

The V892 Tau Circumbinary Disk

Monnier +2008

A More Detailed View of the V892 Tau System

Long + 2021

Semi-major axis = 7.1 ± 0.1 au Orbital Period = 7.7 ± 0.2 yr Eccentricity = 0.27 ± 0.1 Binary Inclination = $59.3 \pm 27^{\circ}$ Dynamical Mass = $6.0 \pm 0.2M_{\odot}$ Disk inclination = $\sim 55^{\circ}$

Results: V892 Tau Reconstructed Images

Vides+2023

Results: V892 Tau Geometric Model Fitting

A circumbinary disk and stellar companion are preferred at L band and a circumprimary disk and companion are preferred at K band.

Vides+2023

Results: V892 Tau Disk+Companion Model Observables

Vides+2023

Results: V892 Tau Best-Fit Model Reconstruction

Images reconstructed from the best-fit disk + companion CPs and V²s

The best-fit model reproduces the data at K band but struggles at L band

Results: V892 Tau Orbit Fitting

•50 random orbits sampled from the posterior distribution

We update the orbit of the binary with Orbitize! (Blunt et al. 2019). From our astrometry, we fit an orbit to the data and constrain the parameters.

Results: V892 Tau Companion Contrast Limits

- Sensitive to 20 MJ companion at L band and 50 MJ at K band
- Sensitive to rapid giant planet accretion (~4 x 10⁻⁵ M_J²/year) at L band

Summary and Comparison to Previous Results

New discovery! We detect a circumprimary disk and update the geometry of the V892 Tau system.

Orbital parameter	Long et al. 2021	This work
Semi-major Axis (au)	7.1 ± 0.1	$6.8 \pm ^{0.06}_{0.03}$
Period (yrs)	7.7 ± 0.2	$7.2~\pm^{0.04}_{0.06}$
Eccentricity	0.27 ± 0.1	0.25 ± 0.04
Inclination (degrees)	59.3 ± 2.7	57.9 ± 2.8
Dynamical Mass (M_{\odot})	6.0 ± 0.2	$6.1 \pm ^{0.2}_{0.1}$

Our understanding of the V892 Tau system geometry:

After this paper

Future Work: Companion Candidate Detections

100 mas 12 AU

2019

100 mas 12 AU 2021 April 2021 June

Companion Candidate 2

Vides et al. in prep

100 mas 12 AU

Future Work: Imaging the Inner Regions of Transition Disks

Data Reconstruction

Geometric Model

Model Reconstruction

Vides et al. in prep

Overall Survey: Planet Mass x Accretion Rate Sensitivity

Vides et al. in prep

Najita+2015

Key Take Aways

V892 Tau:

- First detection of a circumprimary disk with FWHM= ~2 AU.
- We place contrast limits on undetected companions and characterize the AO performance of NRM + the Keck PyWFS.
- Multi-epoch, multi-wavelength data allows us to differentiate between disk emission and emission from an orbiting companion.

Science impacts of this survey overall:

- Detect and characterize rapidly protoplanets at solar-system scales
- Characterize disk structure and dynamical interactions
- Place statistical constraints on the underlying protoplanet population

High-angular-resolution Imaging of the V892 Tau Binary System: A New Circumprimary Disk Detection and Updated Orbital Constraints

Christina Vides, Steph Sallum, Josh Eisner, Andy Skemer, and Ruth Murray-Clay

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. 2009698