

Е C R

CENTER FOR INTERDISCIPLINARY EXPLORATION AND RESEARCH IN ASTROPHYSICS

Astrophysical insights from the compact-object mass distribution inferred with gravitational waves

Sylvia Biscoveanu NHFP Symposium 2024

@sylvia_bisco

sbisco@northwestern.edu

NASA Hubble Fellowship Program

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

Masses in the Stellar

LIGO-Virgo-KAGRA | Aaron Geller | N

The compact object mass distribution provides key astrophysical insights:

Evidence for a gap between the most massive neutron stars and least massive black holes?

Biscoveanu - IAU 389 Plenary

Evidence for a gap between the most massive neutron stars and least massive black holes?

FILLING THE MASS + GAP

with observations of compact binaries from gravitational waves

Includes components of compact binary mergers detected with a False Alarm Rate (FAR) of less than 0.25 per year

GW230529: the merger of a neutron star with a lower-mass-gap object

OR

Heavy binary neutron star merger

Neutron star merging with low-mass black hole

Including GW230529 decreases the minimum mass of black holes in the NSBH population

Including GW230529 decreases the minimum mass of black holes in the NSBH population

Probability of the existence of a mass gap (in NSBH) decreases from 98.6% to 7.2%

Merger outcome depends on binary properties

Black hole swallows neutron star

Rigid neutron stars, unequal mass ratios, small black hole spins

Neutron star tidally disrupted outside ISCO

Image: Foucart FrASS 2020

Deformable neutron stars, equal mass ratios, large prograde spins

The detection of GW230529 means that NSBH mergers are more likely to be multimessenger sources

GW230529 Summary

Likely the merger of a neutron star with a massgap black hole

Challenges compact object formation paradigms

Enhances multimessenger prospects for neutron star-black hole mergers

Raises questions about X-ray binary selection selection effects

Backup

Our observational landscape

Compact-object binary formation

Isolated binary evolution

- Spins aligned to orbital angular momentum
- First-born black hole has small spin
- Second-born black hole can be spun up
- Masses set by supernova physics

Compact-object binary formation

Dynamical assembly

- **Isotropically distributed spins**
- Low spins except for hierarchical mergers
- Hierarchical mergers can populate mass gaps

arxiv - Mandel⁸& Farmer 1806.05820 Biscoveanu - IAU 389 Plenary 18

The fates of massive stars

ViuBn

Features from different formation channels?

Common envelope

Clues to the formation of the most massive stellar-mass black holes?

(Pulsational) pair instability supernovae

Hierarchical mergers

21

GW230529 is the most equal-mass neutron star-black hole merger observed to date

GW230529 is at least as common as more "vanilla" unequal-mass NSBH

- General relativity predicts a unique gravitational waveform for each set of binary parameters
- Use different "approximant" waveforms to reduce computational cost of full solution

- More massive systems merge at lower frequency \rightarrow spend less time in LIGO's sensitive band
- More massive, larger amplitude at fixed distance

$$
{\cal A}_{\rm GW}\propto\frac{{\cal M}^{5/6}f^{-7/6}}{d_L}
$$

- General relativity predicts a unique gravitational "waveform" for each set of binary parameters
- Amplitude and frequency both increase in time as merger approaches
- More rapidly spinning systems spend more time in LIGO's sensitive band due to "orbital hangup effect"

- General relativity predicts a unique gravitational "waveform" for each set of binary parameters
- Amplitude and frequency both increase in time as merger approaches
- Systems with spin vectors misaligned to the orbital angular momentum exhibit general relativistic "precession"
- Modulation of the waveform due to precession of the orbital plane

Gravitational-wave detection

• Matched filtering – compare gravitational-wave signals from a fixed template bank to the strain data, maximize the "match"

Parameter estimation

- Use Bayesian inference to sample across the whole 15-dimensional binary parameter space and obtain posterior probability distributions
- Requirements:
	- Likelihood of observing the data given a certain model
	- Prior probability of each binary parameter

LIGO Noise Properties

• Assume data has both a gravitational-wave signal component and a noise component:

 $d = h + n$

• Observe dimensionless strain time-series, Fourier transform into frequency domain

LIGO Noise Properties

• Assume data has both a gravitational -wave signal component and a noise component:

 $d = h + n$

• Well -behaved data in the absence of a signal is gaussian about the "amplitude spectral density" (ASD) or "strain noise" \rightarrow Gaussian likelihood

$$
p(d | \boldsymbol{\theta}) \propto \frac{(d-h)^2}{2ASD^2}
$$

Population analysis

- By combining our $O(100)$ events, we can estimate the parameters governing the distributions from which they are drawn using hierarchical Bayesian inference
- Account for individual-event statistical uncertainty and for selection effects
- Ex: assume spin magnitude is a Beta distribution characterized by an unknown mean and width
	- Wysocki+ PRD 100, 043012 (2019)

Electromagnetic counterparts

- Fate of the merger remnant and electromagnetic counterpart depends on the properties of the component objects
- *Gamma-ray burst:* most energetic electromagnetic explosions observed in the universe
- *Kilonova:* optical emission powered by the radioactive decay of freshly synthesized heavy elements

Astrophysical population inference

No evidence for lower mass gap between neutron stars and black holes

Neutron stars detected in GWs are more massive than those detected as pulsars in
our galaxy

Neutron star-black hole mergers

The black holes are less massive than those in black hole binaries

And more slowly spinning

Multimessenger prospects

- Neutron-star black hole mergers are unlikely to produce electromagnetic counterparts
	- Unequal mass ratios and low black hole spins
- Upper limit of 20 Gpc⁻³ yr⁻¹ GRBs from NSBH mergers at 90% credibility (underlying beamingcorrected rate)

Neutron star -black hole mergers

- For small neutron star radii, extreme mass ratios, and low black hole spin, the neutron star is more likely to plunge directly into the black hole \rightarrow no electromagnetic counterpart
- Based on the observed population, at most 14% of mergers detectable in gravitational waves may be electromagnetically bright
- Fold in counterpart non -detection into Bayesian framework to constrain the neutron star equation of state

Electromagnetically-bright fraction

- At most 14% of NSBH sources may have an associated electromagnetic counterpart
- 99% probability that none of the four NSBH candidates we consider were electromagnetically bright
- \blacktriangleright Use this constraint to inform the population properties and measure the neutron star equation of state

observed remnant $mass = 0$ remnant mass predicted by fitting formula equation of state piecewise polytrope parameters $p(M_{\text{rem}}|q, m_{\text{NS}}, \chi_{\text{BH},z}, \Lambda_{\text{EoS}}) = \delta(M_{\text{rem}}(q, m_{\text{NS}}, \chi_{\text{NS}}, \chi_{\text{BH},z}, \Lambda_{\text{EoS}})$

Hierarchical Modeling

• The new likelihood is the original likelihood marginalized over the original parameters:

$$
\mathcal{L}(d|\Lambda) = \int d\boldsymbol{\theta} \mathcal{L}(d|\boldsymbol{\theta}, \Lambda) \pi(\boldsymbol{\theta}|\Lambda) \leftarrow \text{Hyper-prior}
$$
\n
$$
= \int d\boldsymbol{\theta} \mathcal{L}(d|\boldsymbol{\theta}) \pi(\boldsymbol{\theta}|\Lambda)
$$
\n
$$
= \int d\boldsymbol{\theta} \mathcal{L}(d|\boldsymbol{\theta}) \pi(\boldsymbol{\theta}|\Lambda)
$$
\n
$$
= \int d\boldsymbol{\theta} \frac{p(\boldsymbol{\theta}|d) \mathcal{Z}_{\boldsymbol{\theta}}}{\pi_0(\boldsymbol{\theta})} \pi(\boldsymbol{\theta}|\Lambda)
$$

GW230529

• Observed by LIGO Livingston only significant detection by three independent search pipelines

- Mass of the primary staunchly in 3-5 Mo range
- Support for either very high-mass neutron star or low-mass black hole

What's next?

