

The First Polarized Image of Sagittarius A*

Sara Issaoun

Einstein Fellow at the Smithsonian Astrophysical Observatory

NHFP Symposium - 20 September 2024

A Tale of Two Black Holes

55 million light-years away from us 6.5 billion solar masses 27 thousand light-years away from us 4 million solar masses

A Tale of Two Black Holes

Visualization by L. Medeiros, IAS/ xkcd

The Polarization of Sgr A*: Historical Context

Proto-EHT results (2013) are the only observations that resolve the polarization of Sgr A* at any wavelength!

- Strong polarization on long baselines (>100% interferometric fractional polarization)
- Asymmetric polarization implies spatial changes in the polarization direction

The Polarization of Sgr A*: Historical Context

Polarimetric observations have provided some of the most significant breakthroughs for studies of Sgr A* over the past few decades:

- Decisive in establishing Sgr A* as an extremely underfed black hole
- Best window into the variability of Sgr A*
- Multiple lines of evidence for persistent, partially ordered magnetic fields near Sgr A*

Unlike M87*, there are almost no previous polarimetric measurements of Sgr A* using VLBI!

EHT 2017 Sgr A* Campaign

Image Reconstruction Methods: Diversity and Redundancy

$$I(\mathbf{x}) \propto \iint e^{2\pi i \mathbf{u} \cdot \mathbf{x}} V(\mathbf{u}) d^2 u$$

Image Reconstruction Methods: Diversity and Redundancy						
eht-imaging	Pixel basis	Stokes I self-cal'd (CP, CA, V)	Stokes Q,U (RL^*,\breve{m})	Stokes V $(RR^* - LL^*)$	Pre-marg. variability	RML+survey
DoG-HiT	Wavelet basis	Stokes I self- cal'd (CP,CA)	Stokes Q,U D-term fit (RL*)	Stokes V $(RR^* - LL^*)$	Post-marg. variability	RML+survey
THEMIS	Splined raster basis	Stokes I,Q,U,V self-cal'd, D-term fit (RR*, LL*, RL*, LR*)			Pre-marg. variability	Posterior exploration
snapshot m-ring	m-ring model	Stokes I,Q,U,V (CP, CA, <i>m</i>)			Post-marg. variability	Posterior exploration

Image Reconstruction Methods: Diversity and Redundancy							
eht-imaging	Pixel basis	Stokes I self-cal'd (CP, CA, V)	Stokes Q,U (RL^*,\breve{m})	Stokes V $(RR^* - LL^*)$	Pre-marg. variability	RML+survey	
DoG-HiT	Wavelet basis	Stokes I self- cal'd (CP,CA)	Stokes Q,U D-term fit (RL^*)	Stokes V $(RR^* - LL^*)$	Post-marg. variability	RML+survey	
THEMIS	Splined raster basis	Stokes I,Q,U,V self-cal'd, D-term fit (RR*, LL*, RL*, LR*)			Pre-marg. variability	Posterior exploration	
snapshot m-ring	m-ring model	Stokes I,Q,U,V (CP, CA, <i>m</i>)			Post-marg. variability	Posterior exploration	

Image Reconstruction Methods: Diversity and Redundancy						
eht-imaging	Pixel basis	Stokes I self-cal'd (CP, CA, V)	Stokes Q,U (RL^*,\breve{m})	Stokes V $(RR^* - LL^*)$	Pre-marg. variability	RML+survey
DoG-HiT	Wavelet basis	Stokes I self- cal'd (CP, CA)	Stokes Q,U D-term fit (RL*)	Stokes V $(RR^* - LL^*)$	Post-marg. variability	RML+survey
THEMIS	Splined raster basis	Stokes I,Q,U,V self-cal'd, D-term fit (RR*, LL*, RL*, LR*)			Pre-marg. variability	Posterior exploration
snapshot m-ring	m-ring model	Stokes I,Q,U,V (CP, CA, <i>m</i>)			Post-marg. variability	Posterior exploration

Image Reconstruction Methods: Diversity and Redundancy						
eht-imaging	Pixel basis	Stokes I self-cal'd (CP, CA, V)	Stokes Q,U (RL^*,\breve{m})	Stokes V $(RR^* - LL^*)$	Pre-marg. variability	RML+survey
DoG-HiT	Wavelet basis	Stokes I self- cal'd (CP,CA)	Stokes Q,U D-term fit (RL*)	Stokes V $(RR^* - LL^*)$	Post-marg. variability	RML+survey
THEMIS	Splined raster basis	Stokes I,Q,U,V self-cal'd, D-term fit (RR^*, LL^*, RL^*, LR^*)			Pre-marg. variability	Posterior exploration
snapshot m-ring	m-ring model	Stokes I,Q,U,V (CP, CA, <i>m</i>)			Post-marg. variability	Posterior exploration

Image Reconstruction Methods: Diversity and Redundancy						
eht-imaging	Pixel basis	Stokes I self-cal'd (CP, CA, V)	Stokes Q,U (RL^*,\breve{m})	Stokes V $(RR^* - LL^*)$	Pre-marg. variability	RML+survey
DoG-HiT	Wavelet basis	Stokes I self- cal'd (CP,CA)	Stokes Q,U D-term fit (RL*)	Stokes V $(RR^* - LL^*)$	Post-marg. variability	RML+survey
THEMIS	Splined raster basis	Stokes I,Q,U,V self-cal'd, D-term fit (RR*, LL*, RL*, LR*)			Pre-marg. variability	Posterior exploration
snapshot m-ring	m-ring model	Stokes I,Q,U,V (CP, CA, <i>m</i>)			Post-marg. variability	Posterior exploration

Image Reconstruction Methods: Diversity and Redundancy

Many methods with:

- Different assumptions about the image
- Different data products
- Different variability mitigation
- Different image products
 Wherein they agree:
 Signals on the sky,
 not artifacts of the analysis.

Understanding our images

Real Data: Linear Polarization Images

Method-average 50 μ as

Real Data: Circular Polarization Images

snapshot m-ring THEMIS Brightness Temperature (10^9 K) -0.10.0eht-imaging DoG-HiT

All methods reconstruct negative circular polarization on the West side of the emission ring

Both THEMIS and m-ring modeling find an East-West dipole structure

Overall preference for simple circular polarization structures

The circular polarization structure is more uncertain than the linear polarization structure

This is Sagittarius A*!

What are we looking at?

- Very low accretion rate implies puffy hot accretion flow.
- **Synchrotron radiation**: intrinsically polarized, tracing magnetic field
- Non-polarized image already preferred models that were (i) nonzero spin, (ii) relatively face-on, and (iii) strongly magnetized (EHTC et al. 2022a-f).
- **New**: large polarization fraction with rotational symmetry.

General Relativistic Magnetohydrodynamics (GRMHD)

General Relativistic Ray Tracing (GRRT)

Evolve a magnetized torus of gas in a Kerr spacetime of a given spin.

Solve null geodesic equation for trajectories, then do polarized radiative transfer.

Movies: Hotaka Shiokawa

Additional plasma effects?

reated by Ioannis Myserlis Ising EMANIM (https://emanim.szialab.org/)

As polarized emission travels through a magnetized plasma, it is modified by **Faraday effects**.

To "undo" Faraday rotation by an external screen and "derotate," astronomers compute the **rotation measure (RM)**.

$$\mathrm{RM} = \frac{\Delta \mathrm{EVPA}}{\Delta \lambda^2}$$

For Sgr A*, we observed an RM corresponding to a 46 degree rotation (Wielgus et al. 2023). However, we're not sure if this really corresponds to an external screen to be removed.

Implies counter-clockwise inflow

Implies clockwise inflow

RM Derotated

€

Combined Constraints: Without derotation

Preferred models are:

- Moderate inclination
- Rotating counterclockwise
- Mostly MAD

• Inconsistent with total intensity constraints

∰≯• (

Combined Constraints: With derotation

Preferred models are:

- Moderate inclination
- Rotating **clockwise**
- Mostly MAD

• **Consistent** with total intensity constraints

The Best-Bet Model

- Magnetically Arrested Disk (MAD), just like M87*. Is this universal?
- Jet is 150% efficient due to spin extraction.
- Significant emission from jet sheath.

A Tale of Two Black Holes.. in Polarization!

Polarized emission from plasma around our Milky Way supermassive black hole Sagittarius A*

Cr. Event Horizon Telescope Collaboration

Polarized emission from dust at the center of our Milky Way Cr. NASA/SOFIA, NASA/Hubble Space Telescope/NICMOS.