Reconstructing multi-frequency movies of supermassive black holes with PRIMO

Lia Medeiros

NASA Einstein Fellow Princeton University NHFP Symposium, September 17, 2024

Medeiros et al. 2018, 2023a, 2023b

Principal-component Interferometric Modeling PRIMO

Medeiros et al. 2018, 2023a, 2023b

Principal-component Interferometric Modeling PRIMO

Principal-component Interferometric Modeling PRIMO

Psaltis, Ozel, Medeiros et al. Submitted to ApJ

Medeiros et al. 2023a

Unlike general purpose imaging algorithms, PRIM does not create 'knot' artifacts along the ring

PRIMO Summary

- Does not create "knot" artifacts in the images
- Able to reconstruct complicated source structure
- Fills in Fourier space in a physically motivated manner
- Can reconstruct images that are not contained in original simulation data set
- Allows for comparisons with simulations
 PRIMO

Medeiros et al. 2023b

Medeiros et al. 2023b

2017 EHT observations

On the horizon...

SMA SMT LMT Ηz JCMT APEX ALMA د.. SPT IRAM -5 -10 -10 -5 5100 $u\left(\mathrm{G}\lambda\right)$

2017 EHT observations

On the horizon...

SMT SMA LMT Ηz Hz JCMT APEX ALMA 5 SPT IRAM -5 Additions since 2017 -10 *************** GLT KP NOEMA -10 10 -5 0 5 $u\left(\mathrm{G}\lambda\right)$

In 2023 we observed at 0.8 mm (345 GHz) as well as 1.3 mm (230 GHz)

2017 EHT observations

SMT

ALMA

Additions since 2017

KP

LMT

JCMT

GLT

SPT

SMA

APEX

NOEMA

-5

-10

-10

-5

0

 $u\left(\mathrm{G}\lambda\right)$

IRAM

On the horizon...

In 2023 we observed at 0.8 mm (345 GHz) as well as 1.3 mm (230 GHz)

Event Horizon Telescope Makes Highest-Resolution Black Hole Detections from Earth

08.27.24 News Release

Ηz

Home > News > Event Horizon Telescope Makes Highest-Resolution Black Hole Detections from Earth

Using the Event Horizon Telescope (EHT), astronomers have achieved very-long-baseline interferometry test observations at 345 GHz, the highest-resolution such observations ever obtained from the Share this Page

🖌 🎽 🛅 🖂

2017 EHT observations

On the horizon...

SMT SMA LMT Ηz 90 GHz JCMT APEX ALMA 5 SPT IRAM -5 Additions since 2017 -10 ************* GLT KP NOEMA -10 510 -5 0 $u\left(\mathrm{G}\lambda\right)$

Plan to observe at ~90 GHz simultaneously at several sites

Planned additions HAY

AMT

OV

Introducing Multi-Wavelength PRIMO

Fit simultaneous multi-wavelength observations, taking into account the correlations between the wavelengths, but generating a different image per wavelength

Introducing Multi-Wavelength PRIMO

Fit multiple epochs of observations, generating single posteriors on black hole parameters (mass/distance, orientation of spin axis) while allowing for variations in image features (a time-series of images, or movie)

Preliminary synthetic fits

M87 observations once a week

Multi-Wavelength PRIMO Capabilities

- Multiple epochs, single M/D posterior
- Multi-wavelength, learns correlations between wavelengths
- Multi-band
- Time-series of images/movies, keeping BH params constant

Imedeiros@princeton.edu liamedeiros.com

Multi-Wavelength PRIMO Capabilities

- Multiple epochs, single M/D posterior
- Multi-wavelength, learns correlations between wavelengths
- Multi-band
- Time-series of images/movies, keeping BH params constant

COMING SOON...

- polarization!
- improved priors for movies

Imedeiros@princeton.edu liamedeiros.com

Errors are still <1% for Butterworth filter with radius 15G\lambda

out to longest current EHT baselines (~12 G\lambda for 345)

PRIMO can accurately reconstruct images that significantly differ from simple crescent shapes

Medeiros et al. 2023a

Salient image features are robust

EHT M87 Paper IV, 2019

MCMC steps

The previous Gaussian filter we used significantly suppressed the power at longer baselines

M

The previous Gaussian filter we used significantly suppressed the power at longer baselines

 \mathbb{M}

The previous Gaussian filter we used significantly suppressed the power at longer baselines

M