The Highest Angular Resolution 3D Dust Map

Andrew Saydjari Hubble Fellow @ Princeton

> NHFP Symposium September 17th, 2024

How Wohielrevies greetra ere?

Edenhofer+2023 [incl. Saydjari]

VC: Gordian Edenhofer

3D Dust Mapping Scheme: Star Reddenings

But wait, DECaPS is 3D!

What is DECaPS2?

5 photometric bands (grizY) DEC PS2 6.5% sky (2700 deg²)

using **DECam** Photometric depth (23.5, 22.6, 22.1, 21.6, 20.8 AB mag)

What is DECaPS2?

Optical-NIR Survey of Galactic Plane

5 photometric bands (grizY) DEC PS2 6.5% sky (2700 deg²) using **DECam** Photometric depth (23.5, 22.6, 22.1, 21.6, 20.8 AB mag)

What is DECaPS2?

Optical-NIR Survey of Galactic Plane

5 photometric bands (grizY) DEC PS2 6.5% sky (2700 deg²) using **DECam** Photometric depth (23.5, 22.6, 22.1, 21.6, 20.8 AB mag)

How do we separate the background?

Focus on r-band image of HII Region (CED 116)

Most photometric pipelines use locally smooth backgrounds on scales >> PSF

What is the impact of background mismodeling?

Spatially-correlated bias in flux and flux uncertainty poisons downstream analysis

"Conventional" photometric solution from Crowdsource

Correcting Flux and Flux Uncertainties

Significantly reduces correlation between photometry and filament structure

How many sources in the catalog?

Where are our stars?

A complete view of 3D dust to 10 kpc

Top Down Comparison

Plane of Sky Slices

What's next? DIB kinematics!

Complexity of Interstellar Dust

Spatial

DECam: CCD S8

Lobster Nebula (NGC 6357)

All you need is the...

$$f^{b} = \frac{p \ \hat{C}^{-1} r}{p \ \hat{C}^{-1} p} + \frac{p \ \hat{C}^{-1} \mu}{p \ \hat{C}^{-1} p} = f^{b}_{res} - f^{b}_{pred}$$

Train covariance matrix on local translations of subimage window

Make a guess for masked region conditional on the local background

Reasonable guess given information we have

Further, the conditional covariance of the infill gives statistical draws

Robust to star-mask size

Does infilling improve photometry?

Sample 2D Residual Field

How many visits?

Are the new error bars right?

Use injection tests to check if the distribution of photometric errors are normal Multiplicative Underestimation of Error (z-band)

How much did the error bars change?

A view of where we were overconfident before!

DIB Kinematic Precision

Correspondence between DIB kinematic substructures and CO

