Core-Collapse Supernovae: Bounce to Breakout

NASA Hubble Symposium Caltech, 09/19/2024

David Vartanyan NASA Hubble Fellow Carnegie Observatories

Collaborators: Benny Tsang (Berkeley), Daniel Kasen (Berkeley) Tianshu Wang (Princeton-> Berkeley), Adam Burrows (Princeton) Lizzy Teryoshin (UCSD - CASSI), Lyla Choi (Princeton)

Neutrino-Driven Supernovae Simulations Power Robust Explosions

Time After Bounce [s]

Vartanyan et al. 2023 Wang et al. 2023 Burrows et al. 2023

Time:0.000 s

.

 $25 M_{\odot}$

Neutrinos in CCSNe

https://dvartany.github.io/data/

Vartanyan & Burrows, 2023 Seadrow et al. 2018

Gravitational Waves in CCSNe

https://dvartany.github.io/data/

Vartanvan et al. 2023 Choi, Burrows, Vartanyan 2024

Lyla Choi

- Galactic SN are detectable across 5 decades in frequency
- With Current & Next-Gen detectors
- For all masses •
- Including Matter- & neutrino-memory GWs

The Next Generation of Breakout Simulations

Ni-56 Distributions

25-solar mass model w/ 1 B energy:

Correlation between Nickel bullet **mass fraction**, **velocity**, & **distribution**

- Bulk Ni56 velocities > 4000 km/s
- Comparable to Cas A, iron-rich ejecta velocities
 'around and above 4000 km/s' (Milisavljevic et. al. 2024)

 $25~M_\odot \qquad \qquad 39.87~s$

Synthetic Observables, $23~M_{\odot}\,\mathrm{RSG}$

progenitor

$$M_{\rm ej} = 8.5 \ M_{\odot}, E_{\rm K} = 3 - 4 \times 10^{50} \ {\rm erg}, M_{\rm ni} = 0.03 \ M_{\odot}$$

bolometric light curve (angle averaged) broadband light curves (angle averaged)

Viewing angle dependent spectra, $23~M_{\odot}$ progenitor

3D LTE radiative transfer

Asymmetry and Nebular line Profiles

First 3D energetic CCSNe carried out from core-collapse to beyond shockbreakout with consistent neutrino heating

Massive stellar explosions can generically produce:

- 1. Energies, ejecta yields
- 2. Ejecta bulk and peak velocities
- 3. Asymmetric structures:
 - Cavities/voids
 - Bullets/fingers
 - Bochum event
- 4. ~1 day delay in SBO by LoS
- 5. Thorough element mixing

Initial asymmetries set final structures!

