The Occurrence of Brown Dwarfs and Planets from RVs and Astrometry

Judah Van Zandt Postdoc, UC Santa Barbara ExSoCal December 16, 2025

Collaborators

Greg Gilbert (Caltech), Steven Giacalone (Caltech), Erik Petigura (UCLA), Luke Handley (Caltech), Andrew Howard (Caltech)

What is the difference between giant planets and brown dwarfs?

What is the difference between giant planets and brown dwarfs?

Mass (deuterium burning limit)

• M<13 M_J: planet, 13 M_J<M: brown dwarf

Formation pathway

- Planets form by core accretion in the disk (low e, high Fe)
- Brown dwarfs form by cloud/disk instabilities (larger range of e and Fe)

What is the difference between giant planets and brown dwarfs?

Mass (deuterium burning limit)

• M<13 M_J: planet, 13 M_J<M: brown dwarf

Formation pathway

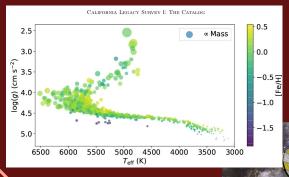
- Planets form by core accretion in the disk (low e, high Fe)
- Brown dwarfs form by cloud/disk instabilities (larger range of a and Fa)

range of e and Fe)

More detail in Greg's talk!

ExoSoCal | 17 Dec 2025 | Los Angeles, CA

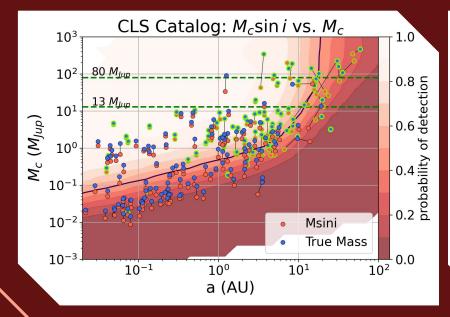
<u>Goal</u>

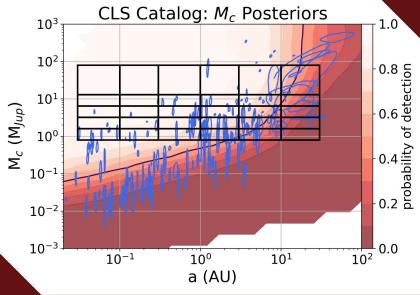

determine whether companion dynamics/host star properties point to a specific planet/BD mass divide

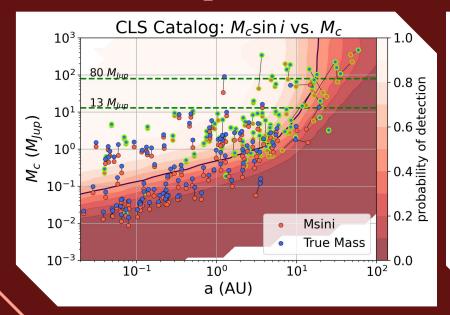
To study planet/BD properties, we need a special sample

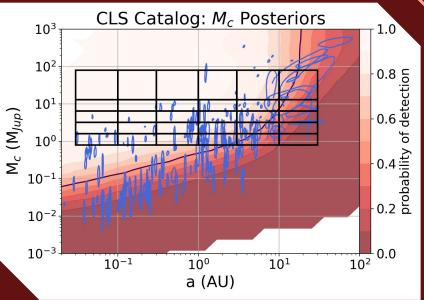
- 1) Long observing baselines (~30 yrs)
- 2) Large stellar sample (100s of stars)
- 3) Three-dimensional orbit fits

To study planet/BD properties, we need a special sample

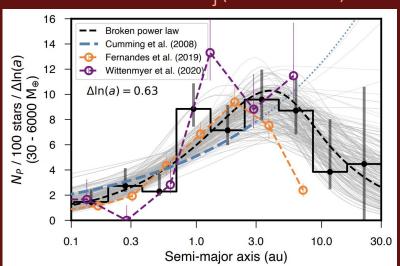

- 1) Long observing baselines (~30 yrs)
- 2) Large stellar sample (100s of stars)
- 3) Three-dimensional orbit fits (true mass)



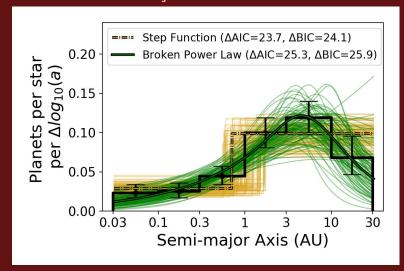

CLS + Hipparcos-Gaia = precise orbits for hundreds of companions around 719 stars out to 10 AU!


I refit the 128 planet/BD hosting CLS systems with Orvara, using HGCA astrometry when available

I refit the 128 planet/BD hosting CLS systems with Orvara, using HGCA astrometry when available

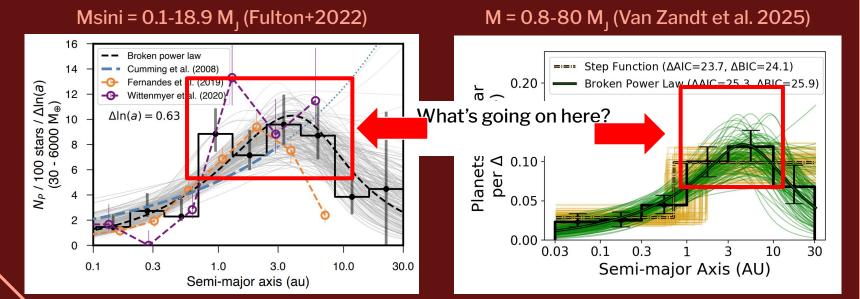

7/18 (40%) of Doppler BDs are stars

With a refit sample, we can examine population-level parameter distributions

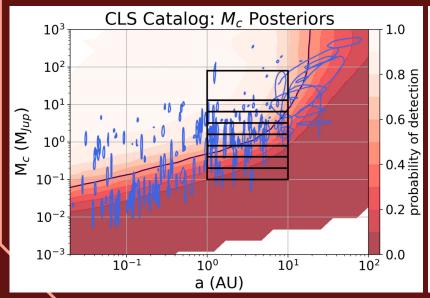

- Do higher-mass companions orbit lower-metallicity stars? Giacalone et al. (2025)
- Do higher-mass companions tend to have higher eccentricities? Gilbert, Van Zandt, et al. (2025)
- How common are high-mass companions
 compared to lower-mass ones? Van Zandt et al. (2025)

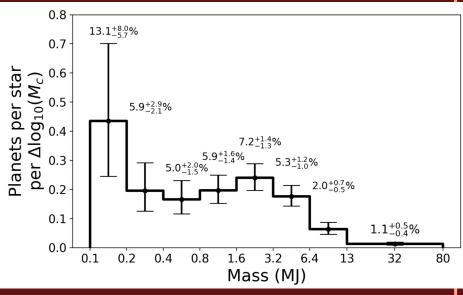
The semi-major axis distribution is consistent with Fulton et al. (2022)

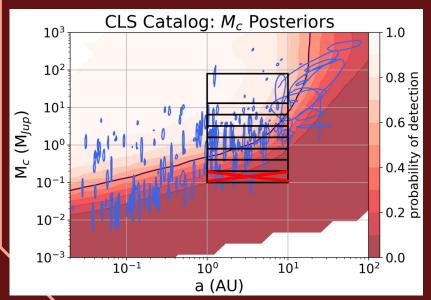
Msini = 0.1-18.9 M, (Fulton+2022)

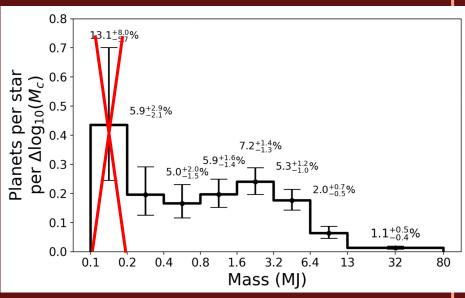


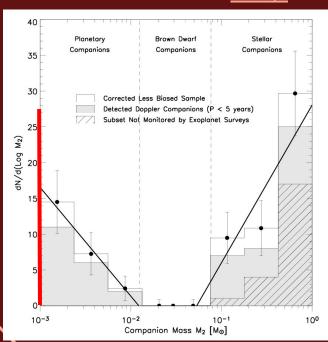
 $M = 0.8-80 M_{I}$ (Van Zandt et al. 2025)

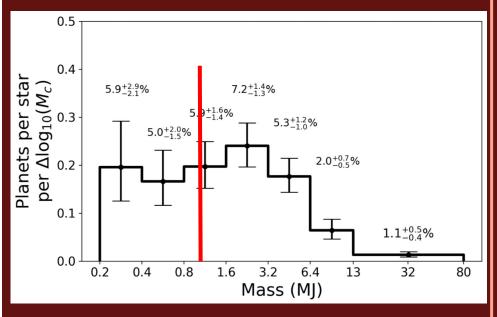

Both distributions show a peak between 1-10 AU followed by a marginally significant fall-off at a>10 AU


The occurrence plateau between 1–10 AU is relevant to planet formation


Both distributions show a peak between 1-10 AU followed by a marginally significant fall-off at a>10 AU


The mass distribution between 1-10 AU shows that BDs and super-Jupiters are rare near the snow line

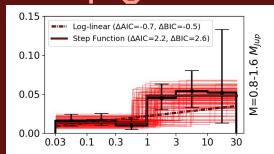

The mass distribution between 1-10 AU shows that BDs and super-Jupiters are rare near the snow line

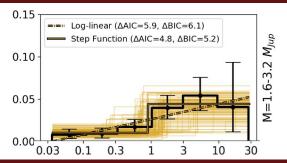


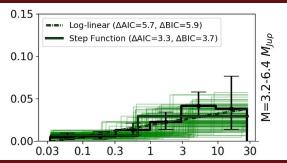
The BD desert extends to 10 AU

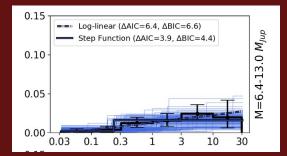
Occurrence rates for P<5 yr

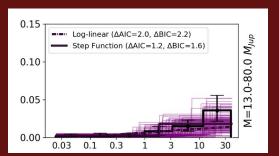
Occurrence rates between 1-10 AU

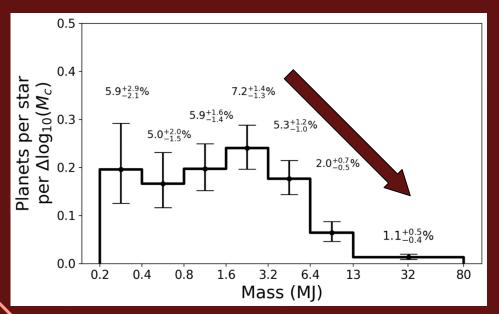

KEY TAKEAWAYS

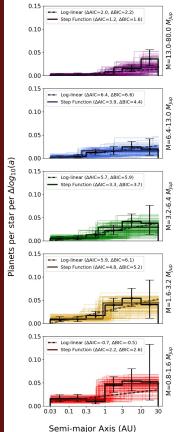

sin(i) contamination can be highly relevant for rare objects — half of RV "brown dwarfs" may be stars


The BD desert extends to at least 10 AU


The mass and semi-major axis distributions of planets/BDs **do not indicate a sharp divide**; the mechanisms that form them likely act in overlapping mass regimes


The SMA distribution does not vary sharply with mass





Semi-major Axis (AU)

SUPPLEMENTAL – no sharp planet/BD transition evident from mass and SMA distributions

No clear evidence of a sharp distribution change

SUPPLEMENTAL: "brown dwarf" companions

from the CLS

- 7/18 BDs → stars
- 7/15 BDs with HGCA

Table 1. Companions with $M_c \sin i = 13-80 M_{\text{Jup}}$

System	Companion	a_i	$M_c \sin i$	a_f	M_c	HGCA?
Name	Index	(AU)	$(M_{ m Jup})$	(AU)	$(M_{ m Jup})$	
HD126614	1	$16.613^{+1.544}_{-1.549}$	$27.407^{+5.833}_{-5.551}$	$24.746^{+17.652}_{-7.764}$	$157.449^{+215.837}_{-60.066}$	True
HD168443	1	$2.879^{+0.032}_{-0.028}$	$17.769^{+0.352}_{-0.361}$	$2.912^{+0.026}_{-0.023}$	$19.908^{+1.226}_{-1.195}$	True
HD26161	0	$20.430^{+6.516}_{-6.518}$	$13.430^{+5.737}_{-6.220}$	$15.133^{+2.380}_{-1.332}$	$47.251^{+6.571}_{-4.817}$	True
HD28185	1	$15.766^{+6.286}_{-5.869}$	$42.183^{+36.696}_{-38.151}$	$8.503^{+0.273}_{-0.276}$	$6.004^{+0.596}_{-0.602}$	True
HD38529	1	$3.736^{+0.010}_{-0.009}$	$13.212^{+0.096}_{-0.101}$	$3.742^{+0.010}_{-0.010}$	$14.728^{+4.399}_{-1.176}$	False
HD66428	1	$22.434^{+13.061}_{-12.980}$	$27.272^{+20.275}_{-19.524}$	$17.424^{+10.660}_{-5.803}$	$18.168^{+10.779}_{-6.258}$	True
HD68988	1	$13.086^{+3.732}_{-3.646}$	$15.056^{+1.942}_{-2.194}$	$11.668^{+0.876}_{-0.694}$	$14.588^{+0.805}_{-0.612}$	True
HD111031	0	$32.061^{+13.771}_{-12.357}$	$65.343^{+40.779}_{-38.709}$	$28.477^{+10.535}_{-5.780}$	$155.224_{-31.547}^{+41.017}$	True
HD16160	0	$16.348^{+0.289}_{-0.275}$	$67.383^{+1.505}_{-1.506}$	$17.905^{+0.229}_{-0.230}$	$102.414^{+2.661}_{-2.632}$	True
HD18445	0	$1.208^{+0.017}_{-0.016}$	$34.177^{+5.277}_{-5.630}$	$1.244^{+0.024}_{-0.019}$	$72.901^{+46.741}_{-11.441}$	False
HD190406	0	$15.536^{+0.318}_{-0.305}$	$67.231^{+2.021}_{-1.933}$	$16.546^{+0.254}_{-0.256}$	$73.366^{+1.989}_{-2.001}$	True
HD211681	0	$7.790^{+0.189}_{-0.182}$	$76.437^{+3.365}_{-3.090}$	$8.311^{+0.151}_{-0.157}$	$188.877^{+7.688}_{-7.775}$	True
HD239960	0	$15.261^{+5.520}_{-6.023}$	$53.934^{+11.627}_{-11.766}$	$8.225^{+0.989}_{-0.647}$	$39.639^{+23.184}_{-6.086}$	False
HD4747	0	$9.841^{+0.165}_{-0.161}$	$49.197^{+1.681}_{-1.539}$	$9.933^{+0.136}_{-0.138}$	$66.040^{+1.755}_{-1.818}$	True
HD68017	0	$21.389^{+4.438}_{-4.530}$	$33.801^{+5.684}_{-5.446}$	$14.414^{+0.276}_{-0.259}$	$143.328^{+2.143}_{-2.062}$	True
HD8765	0	$3.358^{+0.052}_{-0.054}$	$42.985^{+1.500}_{-1.555}$	$3.679^{+0.051}_{-0.053}$	$346.259^{+17.806}_{-17.099}$	True
HIP63510	0	$4.774^{+0.050}_{-0.054}$	$74.231^{+3.108}_{-3.094}$	$4.954^{+0.036}_{-0.036}$	$92.976^{+2.250}_{-2.239}$	True
$\mathrm{HD}167665$	0	$5.390^{+0.072}_{-0.076}$	$48.401^{+1.474}_{-1.364}$	$5.480^{+0.078}_{-0.079}$	$56.990^{+2.791}_{-2.456}$	True

Note. a_i and $M_c \sin i$ values are from Rosenthal et al. (2021), while a_f and M_c values are from this work.

30 years of RVs with the California Legacy Survey

- RV-only fits for 200+ companion-hosting stars
- Median t_{base}=21 years and N_{obs}=74
 128 systems hosting a planet/BD (<80 M_J)
- 195 total companions

Rosenthal et al. (2021)