
A Newly Discovered Giant Planet Causes Inner Planets to be Misaligned with the Host Star in Kepler-129

Jingwen Zhang¹, Lauren Weiss¹, Daniel Huber¹ ¹Institute for Astronomy, University of Hawaii, Honolulu, HI 96822, US

Spin-orbit angle > 40°

Kepler-129 d:

$$P_d = 10.1 \pm 0.8 \ yr$$

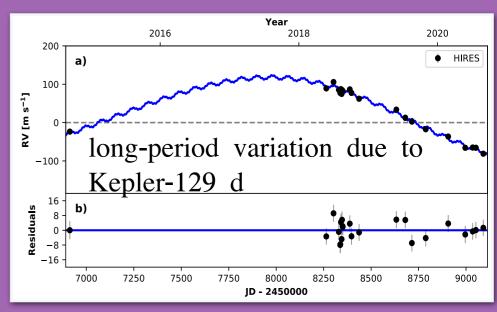
 $e_d = 0.14 \pm 0.08$
 $m \sin i_d = 9.5^{+1.6}_{-1.4} \ M_{Jup}$

Kepler-129 b and c:

both transiting

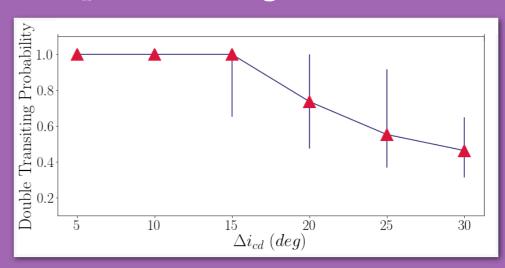
$$P_b \approx 15 d$$

$$r_b = 2.5 R_{\oplus}$$


$$m \sin i_b = 7.5^{+5}_{-2.9} M_{\oplus}$$
 $m \sin i_c = 38^{+10}_{-11} M_{\oplus}$

$$P_c \approx 82 d$$

$$r_c = 2.5 R_{\oplus}$$


$$m\sin i_c = 38^{+10}_{-11} \ M_{\oplus}$$

Six-year radial velocity observation using Keck/HIRES:

Asteroseismology using Kepler: Stellar spin axis is inclined by $50^{\circ} \pm 10^{\circ}$ relative to line of sight

N-body simulation: Kepler-129 b and c transit together less than 50% time if their misaligned with Kepler-129 d larger than 30°

