

Future Ground-based Interferometry

Peter Lawson Jet Propulsion Laboratory

Introduction and Overview

On roadmaps, decadal surveys, and the future of science with ground-based interferometry.

- State of the art
- Near future science programs
- On the design of future facilities

Part I State of the Art

Future Facilities

Refereed Papers in Astrophysics (1955-2002)

Future Facilities

Totals up until end of 2002 Calendar Year

Refereed Papers by Subject

Stellar Diameter Measurements

Early Type	e Stars (O-F)	
	Main Sequence	5
	Other	7
Late-Type	Stars (G-M)	
	Main Sequence	1
	Giants & Supergiants	23
	Carbon and S Stars	3
	Various Diameters	6
Dust Shells	s of Late Type Stars	12
Other Shell	ls	2
Variable S	tars: Pulsating	
	Cepheid Variables	7
	Mira Variables	13
Variable S	tars: Rotating	
	Wolf-Rayet Stars	1
	Be Stars (Envelopes)	12

Variable Stars: Eruptive	
P Cygni	
Young Stellar Objects	
Herbig Ae/Be Stars	
T Tauri Stars	
FU Orionis Stars	
Stellar Limb darkening	
Stellar Surface Structure	
Binary Star Orbits	
Double-lined Spect.	
Single-lined Spect.	
Eclipsing Binaries	
Other Binaries	
Astrometry	
Faint Companion Search	
Nova	

Future Facilities

Stars Measured

Most diameter measurements have been of cool late-type giant stars.

Stellar Diameters Measured					
	Luminosity class				
Spectral	l			IV .	V
туре	Supe	rgiants	Glants	Λ	hain Seq.
0	3				1
В	5	1	6	6	6
A	2		1	2	5
F	8	2		2	1
G	5	3	35	4	1
K	10	17	49	2	3
М	13	15	101		8
Totals	46	38	192	16	25

STELLAR DIAMETERS MEASURED BY INTERFEROMETRY 1000.0 ATMOSPHERIC SEEING LIMIT Angular Diameter (mas) 100.0 Betelgeuse Antares **RESOLUTION LIMIT OF ADAPTIVE OPTICS** Mira Arcturus Peg 👝 R Lyr Aldebaran UU Aur 10.0 MWC 614 Sirius Rige V380 Ori Tau 1.0 β Cru⁴ HD 232078 Pup 0.1 -6.00 -2.00 2.00 6.00 10.00 14.00 Apparent Source Magnitude (V, H, K, or N)

Current Trends

- Longer baselines (~1 mas resolution)
- Multiple telescopes used simultaneously
- Increased emphasis on imaging
- Observing in the infrared: J, H, K, L', N
- Larger apertures and adaptive optics
- Better quality sites (shared facilities)

Part II

Near Future Science Programs

Future Facilities

JPL Future Science: Stars

- Cepheid variables
- Stellar rotation across the H-R diagram
- Envelopes of Be stars
- Winds from hot stars

- Evolved stars
 - AGB dust shells
 - Miras
 - Symbiotic stars
 - Envelopes of S stars
 - Survey of Wolf-Rayets
- Post AGB stars
 - R Corona Borealis stars

JPL Spectroscopic Binaries

Resolvable SB2s

Separation (mas)	All Magnitudes	$m_{V} < 11$	$m_V < 9$	$m_V < 7$	$m_v < 5$
0	505	441	351	232	58
0.050	443	419	342	228	58
0.1	408	390	329	222	58
0.2	359	345	292	210	57
1.0	185	175	149	122	41
10	55	53	47	37	21

"The CHARA Catalog of Orbital Elements of Spectroscopic Binary Stars," S.F. Taylor, J.A. Harvin, and H.A. McAlister, *PASP* **115**, 609-617 (2003)

Future Facilities

Young Stellar Objects PL

Intermediate mass Herbig Ae/Be Stars Low mass T Tauri, FU Ori, GG Tau, HL Tau Jets around YSOs

Ultra-high-sensitivity HDTV I.I. color camera (NHK) Exp. 12 sec. (12 frames coadded) January 16, 1999

Subaru Telescope, National Astronomical Observatory of Japan Copyright © 1999, National Astronomical Observatory of Japan, all rights reserved

Future Facilities

Planet Finding

Exozodiacal dust Low-mass objects

- Brown dwarfs
- Hot extrasolar planets

Galaxies and AGNs

Quasar 3C 273

NASA/STScI

NGC 1068, 3C 273,
 M87. Dust disks...

HST/COSTAR

M77 (NGC 1068)

Future Facilities

Peter Lawson

15

JPL Extragalactic Science

- Circumstellar environment of the white dwarf AE Aqu
- Planetary nebulae
- Galactic X-Ray binaries

Future Facilities

L Resolution and Sensitivity

From Begelman & Krolik 1991, reproduced in "Kilometric Baseline Space Interferometry" ESA SCI (96) 7.

Part III

On the Design of Future Facilities and Science Programs

Future Facilities

Ground vs Space

 Above-atmosphere, access to the whole IR spectrum

 Cooled telescopes give low backgrounds, limited by zodiacal emission

 Telescope apertures restricted by rocket payloads

Future Facilities

P

Slide Courtesy of Pat Roche (Oxford Univ.)

Is There a Limiting Magnitude?

- Tip-tilt performance
- Adaptive optics
- Phase referencing

STELLAR DIAMETERS MEASURED BY INTERFEROMETRY 1000.0 ATMOSPHERIC SEEING LIMIT Angular Diameter (mas) 100.0 E Betelgeuse Antares RESOLUTION LIMIT OF ADAPTIVE OPTICS Mira Arcturus Peg R Lyr Aldebaran UU Aur 10.0 • MWC 614 Sirius Rige V380 Or Tau 1.0 βCru HD 232078 Pup 0.1 -6.00 -2.00 2.00 6.00 10.00 14.00 Apparent Source Magnitude (V, H, K, or N)

Future Facility Described

- International or national facility
- Dedicated (not multi-purpose)
- Snap-shot imaging capability (48 hrs)
- Infrared wavebands (J, H, K)
- Tip/tilt and low-order adaptive optics
- Limiting magnitude of about 14
- Baselines of 1000 to 2000 m
- Comparable in cost to a space mission

A Future Facility for your Science Program

- Choose your science program
- Pick a number, any number... 150 targets?
- How small and how faint is the 150th object?
- Design your interferometer!
- Is your program science or science fiction?

Angular Resolution

Sensitivity How much glass do you need?

- Atmospheric windows
- Aperture Size
- Seeing Conditions
 - Coherence time
- Thermal Background fluctuations
 See talk by Millan-Gabet (2002).

Potential Targets for Infrared Interferometry

Typical Distance	Resolved	Partially Resolved
2 AU	200 m	20 m
5 pc	0.5 R	0.05 R
100 pc	0.02 R	0.002 R
400 pc	0.04 AU	0.004 R
2 kpc	0.4 AU	0.04 AU
5 kpc	1 AU	0.1 AU
16 kpc	3.2 AU	0.3 AU
3.4 Mpc	0.003 pc	6 AU
10 Mpc	0.01 pc	18 AU
19 Mpc	0.02 pc	0.002 pc
1500 Mpc	1.4 pc	0.14 pc
	Typical Distance 2 AU 5 pc 100 pc 400 pc 2 kpc 5 kpc 16 kpc 3.4 Mpc 10 Mpc 19 Mpc 1500 Mpc	Typical Distance Resolved 2 AU 200 m 5 pc 0.5 R 100 pc 0.02 R 400 pc 0.04 AU 2 kpc 0.4 AU 5 kpc 1 AU 16 kpc 3.2 AU 3.4 Mpc 0.003 pc 10 Mpc 0.01 pc 19 Mpc 0.02 pc 1500 Mpc 1.4 pc

Future Facilities

Going Forward

How much will it cost?

- Who will pay for it?
- Where would it be built?

What makes a good infrared observing site?

- Cloud-free
- High
- Dry
- Cold
- Dark
- Low integrated turbulence
- Low high-altitude turbulence
- Low wind
- Accessible

Future Facilities

Peter Lawson

Slide Courtesy of John Storey (Univ. New South Wales)

JPL Cerro Chajnantor, Chile

Future Facilities

Future Facilities

Further Reading

- S.T. Ridgway, "Future Ground-based interferometry," Chapter 18 in *Principles of Long Baseline Stellar Interferometry*, JPL Publication 00-009 (2000).
- J.E. Baldwin, "Ground-based interferometry: the past decade and the one to come," in *Interferometry for Optical Astronomy II*, Proc. SPIE 4838, 1-8 (2002).
- J. Davis, "Measuring stars with high angular resolution: current status and future prospects," in *Calibration of Fundamental Stellar Quantities*, D.S. Hayes et al. eds., 193-208 (1985).

JPL Further Reading (cont.)

- G.W. van Citters, "The Future of Optical/IR Interferometry: The View from NSF," in Working on the Fringe: Optical and IR Interferometry from Ground and Space, S. Unwin and R. Stachnik eds., ASP Conf. Series **194**, 448-459 (1999).
- D.F. Buscher, "Interferometric fitness and the Large Optical Array," in *Interferometry for Optical Astronomy II*, Proc. SPIE 4838, 119-125 (2002).
- Report of the Workshop on Imaging with Ground-based Optical Interferometers, June 13/14, 2000. T. Cornwell and H.A. McAlister, eds. http://olbin.jpl.nasa.gov/papers/Report1.0.PDF

Future Facilities

Acknowledgments

This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

Backup Slides

Towards the 2010 Decadal Survey

Draft a detailed list of tasks and identify individuals or groups willing to undertake the work.

Work towards having all necessary tasks completed in time to influence the next Decadal Survey - well before 2008 or 2009.

Towards the 2010 Decadal Survey (continued)

Detail the science case for the facility

- Beyond VLTI, Keck, CHARA, and NPOI.
- For each class of science target
 - Specify the number of objects attainable
 - Catalog the list of the targets and their known properties
- Identify suitable sites.

Towards the 2010 Decadal Survey (continued)

- Begin the dialog with funding agencies, partners, and developers of potential sites.
- Identify the funding wedge after OWL or CELT?
- Fund a preliminary design and cost study.
- Fund optical/infrared site testing.
- Publish in refereed literature all material related to this work.

Large Binocular Telescope Interferometer

Future Facilities

Peter Lawson

NAS

Magdalena Ridge Observatory

Future Facilities