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::—Pﬁrpesegand réauirements ofi ground-based
adaptive optics

= Technologies for atmospheric AO =

= Measuring wavefronts

@rolliﬁ“ | wavefronts o T—
!!@T'cﬂﬁt Imaging challenges .
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Adzapilve opiics

1. Correct for atmospheric turbulence

i ———

- 2. Secondary outcome: correct for imperfect
telescope optics

R

Without Adaptive Optics
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0 ~Alry~1arc sec 0~ A/D

Long exposure

image
S (each at diffraction limit of telescop

Short exposure Image with
image adaptive optics
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Aberations arise from turbulent
mIXing In atmospheric layers

stratosphere

tropopause
e ——
4 — _ =

10-12 km

e \'iNd flow over dome

boundary layer e —
._’—/\.——_—y ~1km
e —

e ——

Heat sources w/in dome
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Corgpagator inroticr
turbulent atmosprnere
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MTF of Atmosphere

+ Strehl: PSF(0) / PSF(0) |, -
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Maximize Strehl < Minimize mean square wavefront error
(I.e. S =B,(0) ~ exp{-1/2 D, }, so make D, small)

—
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~Transverse correlation distance Correlation time

« Depends on A
« Typical:r,=20cmati=0.5p

Correlation angle

¢ wmd veIOC|ty Vo = O 314 r /7,
V, ~ 200m/s

» Typical: ;=4 arcsecatA=0.5p
« Mean height of turbulence: h, = r,/0
e h0=28.2km
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Atrnospneric AO requiremerits L,O

—_—

= Enough actuators to fit.the wavefront
~— Actuator spacing d ~ r,
= Fast enough update rate to keep up with the
atmosphere
— Temporal bandwidth - ~ 1,

= Guidestar nearby science target

planatl,c_: _patch: 6 < 6, _—

adSUre —
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Apoplication Note

~ = One can consider any random wavefront ¢
- " " " "
— Optical fabrication or alignment errors

— Calibration errors
— Time-variable figure errors

Michelson Summer School,
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Example: the Lick Observatory Adaptive Optics System
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Schemr
00IlCs

optlcally conjugate
— to telescope primary

mirror.

Primary mirror

Control
computer

Deformable mirror

Tip-tilt mirror

Tip-tilt sensor

Beam splitter —_ a

(-

s

Michelson Summer School,

Caltech, July 2004

Imaging camera

17



3 m primary

0.8 m secondary

e 40 subabertures, d=43cm

61 actuators, hex grid, d,=50cm
Max sample rate: 500 Hz
Sodium layer LGS

IR Cam: 2562 HgCdTe, 0.076
arcsec/pixel (Nyquist in K)



~« Laser beam quality (M?2)

~e-Launch telescope aperture d,
matched to r, of atmosphere

e Translates to wavefront
measurement accuracy

. 1
= (spot size) x
(sp ) N

measurement

O Laser Guide Star

{1ag

11240

110G

160

160

h, July 2004







SV Of Walyetror =
sensing 0

e ——

IVIe_asure phase Py measuring |nten5|ty variations

"= Difference between various wavefront sensor
schemes Is the way in which phase differences are
turned into intensity differences

= General block diagram:

Guide Big ) Recon-
‘ Telescope
star ‘E* i Detector structor

Computer

Turbulence  15nsforms aberrations into

JRLENSIty variations
Caltech, July 2004 21
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FloW o LIsa e st

2asure phase”

—-— — .

e  —

= |rradiance transpoert eguation: A Is complex fleld amplltude
~—(Teague, 1982, JOSA 72, 1199)

Let A(x,y,z) =[I(x, z)]”2 explikg(x,y, z)]

= Follow I(x,y,z) as it propagates along the z axis (paraxial
ray approximation: small angle w.r.t. z)

— g Wavaliahime

curvature

p — =-VleVgp—IV’¢

Wavefront tilt

Michelson Summer School,
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Types of wavelront sensors

_‘*-'_

7‘D|rect” " pupT’aﬂe split pupil up Into subapertures In
~ some way,-then use intensity in each subaperture to
deduce phase of wavefront. Sub-categories:

— Slope sensing: Shack-Hartmann, shearing interferometer, pyramid
sensing

— Curvature sensing
— Interferometric

= “Indirect” in focal plane: wavefront properties are deduced |
\whole-aperture intensity measurements made ator

— Phase diversity

Michelson Summer School,
Caltech, July 2004 23



(.." (C’S'l"l”LFQ)

IrOrn rnecs! 'Q"Le_ﬁ'r;*

(b)

Figure 7 (a) Local tilt as a function of sampling location in pupil; (b) reconstructed
wavefront estimate.

Michelson Summer School,
Caltech, July 2004



Wave-front

CCD
Lenslets Detector

T
—
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Centroid Offset Display

\\\ J ; u @ ] T1(xy)dxdy
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#OBSER VN

moved on CCD? "Quad cell formula’

(|3+ |2)_(|4+ |1)}

(I; -|‘—V|2‘+ I‘3 +1,)

28



Dlgzlclvalriteic)2: “clellr” clagericls orl sour
slze p wnich can vary during the nignt

Ry —
=

/ d— \
¥ <
i
" 74
b

signal A
I, 1,

-
X

I 1 Slope = 2/b

_ b (difference of | 's)
-2 (sumofl's)
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ARPIERGISECYARIAUERSIREINECOMIES
nonlinear for large angular deviations

“Rollover” corresponds to
spot being entirely outside
of 2 quadrants

Michelson Summer School,
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S AL AN ILE S o | L)l

nou 2 ratio of a pixelat (e |

- = S=flux of detected photoelectrons /subap _
=g = NUmber of detector pixels per subaperture
= R = read noise in electrons per pixel

= Then the signal to noise ratio in a subaperture for fast CCD
cameras Is dominated by read noise, and

See McLean, “Electronic

Imaging in Astronomy”,

Wiley, Sect. 10.9

Michelson Summer School,
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VI EESUIEINERRERBINIbI L
Shaci-Hartmann sensing.

e

== easwe*ment errol ep‘ends-c-)n Size of spot as seen in a:

%ﬁﬂfe,—ﬁfwavelength A, subap size d, and signal-
to-noise ratio SNR:

Michelson Summer School,
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cicla-ofr gatwaar cdvrarmic raric)a aric

®
s\ f‘a". 1 1 £t CI r 2 Ve daatayaY Sy
sensiivity of Snack-rlartrmann WES
HiFspoetis diffraction limited in a stibaperture d,
inearrange off a guad cell (2x2 pixels)iis limited signal

to £ /1 ./2d radian or a half~wave.

= Can increase dynamic range by enlarging the
spot (e.qg. by defocusing it).

= But uncertainty in calculating centroid oc width x x
N4 so centroid calculation will be less _
accurate. Linear

= Alternative: use more than 2x2 pixels per range

subaperture. Decreases SNR if read noise per
pixel is large (more pixels).

B — — ——
T ﬁ
—

Michelson Summer School,
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Urvature wayefront f\run J L

S——
II

-

f_JFﬁL___hr
| =

Normal

H_ e————
- derivative at
i boundary

Laplacian (curvature)

Michelson Summer School,
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/OBER U

clslel Slleloe:

I _
different for edge, middle of pupll Ly
: B Lenslet array

-— I ——
- N — —

= Example: This is what

~ wavefront tilt (which
produces image
motion) looks like on a

curvature wavefront
Sensor

ﬁonstant llen.inside
— EXxcess | on W ge
[CIt on left edge

Michelson Summer School,
Caltech, July 2004 35
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Z, Difference Image

G. Chanan
Wavefront: pure tilt Curvature sensor signal

Michelson Summer School,
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Difference Image

Michelson Summer School, G. Chanan
Caltech, July 2004 37



Difference Image

Michelson Summer School, G. Chanan
Caltech, July 2004 38



Praciicaldmplemenialicnie]

curvature sensinc

More intense
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= Use osclillating membrane mirror (2 kHz!) to vibrate rapidly
between. l..and |l. extrafocal positions

ERVIEasure intensityaneachsubaperttienwith an“avalancher ==
Sphetedicde™(@nly'need one per subaperturel)
— Detects individual photons, no read noise, QE ~ 60%

— Can read out very fast with no noise penalty

Michelson Summer School,
Caltech, July 2004 39



WVigeistrerrer C
curvaiure sensing

= Error ofia a single set of measurements is determined by —
. pheten statistics, since detector has no noise:

e

where 6, = apparent guide star size, A = wavelength; d = subaperture
diameter and N, is no. of photoelectrons per subaperture per

sample perlod
nstructed

-~ (Error)curvature = N’ whereas (Error)Shack-Hartmann = |Og N

Michelson Summer School,
Caltech, July 2004 40



AcClVelritec|as ar
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e
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= Advantages: o
-~ — Lower noise = can use fainter guide stars than S-H
— Fast readout = can run AO system faster

— Can adjust amplitude of membrane mirror excursion as “seeing”
conditions change. Affects sensitivity. =

— Well matched to bimorph deformable mirror (beth selve Laplace’s
equation), S0 less computation.

ature sgstems appear to be less expensive. __‘
es can fail'ifftoe much light falls onithem. They

are bulky and expensive. Hard to use a large number of them.

Michelson Summer School,
Caltech, July 2004 41
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snearing Interferometry

Interfere a wave ront* =
with itself, slightly
shifted in X, y

= Intensity 1+sin(do/dx), =
1+sin(d¢/dy)

= Reconstruct phase i

Michelson Summer School,
Caltech, July 2004 42



C -

snear mJ Interrerornetry

- = Advantages =
— Can adjust shear as seeing conditions change

— Guide star extent affects fringe visibility, more easily
subtracted to normalize slope sensitivity

— Information/photon roughly the same as, Hartmann
Sensor, noise propagator the same

vantages

Michelson Summer School,
Caltech, July 2004 43



Oscillating Pyramidal Prism

&

Large F/ focus

of the telescope

s

Lens Relay

e

Blurred image of
a reference source

Figure 1.  The overall layout of the wavefront sensor concept described 1n the text.

Michelson Summer School,
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Pyrarmid Sensing

e ——

Es_sentlall a "[Tai:Ep'ose_d” Hartmann sensor —

. A|B|
C|D
A|B| |A|B| |A|B
C|D| |[C|D| |C|D
AlB] |A|B| |A|B| [A[B]| [A[B
clpl |cID| |c[D| |c[D| [CID -
A[B| |A|B| |A|B
C|D| |CID] |CID
A|B
C|D

PViramid: the "ﬂJP BEEens thepyvramid ecge

mann and Pvramid are varlatlo 5.0

Michelson Summer School,
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| Image of
| 1+Sin(¢)

=TS

Pinhole Plane Wave
f AMD

erometer

o
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=W OT Wel

_correcijon

: Divide pupil into regmns of Size Iy, do “best fit” to:

o ———

~ wavefront

= Several types of deformable mirror (DM), each has
Its own characteristic “fitting error” :

e e

=

Giiting” = & (d /1o )°° rad?

sponse Influence function of actuators surface
guality (smoothness), hysteresis, power dissipation

Michelson Summer School,
Caltech, July 2004 48



Typical role of aciu

e P

—

. Actuators arE”qug_d te back of

_‘____.._-u-

~ glass mirror

= \When you apply a voltage
(PZT) or a magnetic field (PMN)
to the actuator, It expands or

ntiactsyin.length, thereby -
: : TETE—
ﬁ@mﬂmmw =

Michelson Summer School,
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p -—Oq.SERI-’?V \

R—— Dlezoelaeciric

e —

- PZ‘F_‘(Iead ZIicenate titanate) gets
longer or shorter when you apply V

= Stack of PZT ceramic disks with
iIntegral electrodes

= Typically 150 Volts ¢
— AX ~ 10 microns |

= 90-20% hysteresis:

Polarni e

0 10 20 30 40 50 60 70 B8O 90 100
Drive Voltage /V

Michelson Summer School,
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e —e—

“aead magﬂesiu_rﬁ niobate (PMN)

= Magnetistrictive:

—Material gets longer or shorter in response to.an
applied magnetic field

= Can, “push” and “pull”if'a magnetic biasis =
%—’ —
ewhat higher hysteresis than PZT: ~ ,

20%

Michelson Summer School,
Caltech, July 2004 51



o —

e —F-—=-—' 2
JE———
T

e ——

= \Want esponse (0 voltage to be Ilnear and one-to-
one

= With hysteresis, response IS nonlinear and non-
unigue ’

0 M0 20 30 40 50 60 70 80 90 100
Drive Voltage /V

Michelson Summer School,
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DM requirerments
~ = Dynamic range: stroke (total up and down range)
e .

— Typical “stroke” for astronomy + several microns. For
vision science up to 10 microns

= Temporal frequency response: -
— DM must respond faster than coherence time t,

= |nfluence function of actuators:

ape of mirror surface when you push juﬁ.@@&@ﬂg@f_‘
(ke Greens; 'funct]on -
an optimize your AO system with a particular influence
function, but pretty forgiving

e - — —

e

Michelson Summer School,
Caltech, July 2004 53



~ = SUrace quality: |
-~ —Small-scale:bumps can’t be corrected by AO
= Hysteresis of actuators:

—\Want actuators to go back to same position
when you apply the same voltage

= Power dissipation: .
on't want teor much resistive.loss In actuators,

caus sseejngl distorts mirror)
er voltage Is better (easier to use, less

power dissipation)

Michelson Summer School,
Caltech, July 2004 54
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destofdeforsrleldl2Trr]

= Segmented

lzirge

S — Made of sep;%Te'seg*ments with small gaps
~ —Each segment has 1 - 3 actuators and can correct:

= Piston only (in and out), or
= Piston plus tip-tilt (three degrees of freedom)

= “Continuous face-sheet”
— Thin glass sheet with actuators glued to the back
— Zonal (square actuator pattern), or

- | . -
dal (sections of annulae, as |nﬂ@ture-§eﬁsng)*

— 2 piezoelectric wafers bonded togethef with array of
electrodes between them. Front surface acts as mirror.

Michelson Summer School,
Caltech, July 2004 55
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dastofdegrorrreldi2Tren
|

- ____smal
:_-__Liqu_id crystal spatiallight modulators
e — e - )

— Technology similar to LCDs for computer screens

— Applied voltage orients long thin molecules, changes
iIndex of refraction

— Response time too slow?
= MEMS (micro-electro-mechanical . systems)

ﬁbricatedhusing microfabrication methods_oj_;hg—.'"
. .

grated|ci — -
y mi onfigurations possible

— Potential to be very inexpensive

T E—

Michelson Summer School,
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CULIJE]JLC L

fﬂJffOf

mrmbye____
_:—-jus{-ln pisten-(in and
out), or in piston plus
tip-tilt (3 degrees of

freedom)

= Fitting error:
Ofitiing” = @ (0 ro)>"

mirror
segments

o——

Michelson Summer School,
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Segnienied . ceiean)e
mirrors: Example

SENAGVIFAWVIiamHerschel

: Telescope, UK): 76 element
- segmented-mirror

= Each square mirror Is
mounted on 3 piezos, each of
which has a strain gauge

= Strain gauges provide | Sy

iIndependent measure of - e

movement, are used to s

.......
........
.....

Michelson Summer éch'oz)l,
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o Each with 3 dof

= Overall diam. 22
cm

Built in early 1990’s for military

Michelson Summer School,
Caltech, July 2004 59



= Facesheet thickness must be large enough to maintain
flatness during polishing, but low enough to deflect when
pushed or pulled by actuators
[ LT O ——

ckness also determines “influen
yrractuator

- i Bﬁgggth
. ctuators have to be stiff, so they won't bend sideways as

the mirror deflects

Michelson Summer School,
Caltech, July 2004 5]0)



- Gfittingz = ag (d/rg)>"° rad=

where ar = 0.28 -

Michelson Summer School,
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Michelson Summer School,

62

Caltech, July 2004



349 degrees
of freedom;
250 in use at
any one time

Michelson Summer School,
Caltech, July 2004

(paper
coasters)
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rifltlaricaeflrictors for Llriailc

DIV

~ = Pysh on four actuatc s—measure deflection
- With an optical interferometer

| ZHER bliqua Flaot ]
+H. 457
B_4+243
(o] o Paint= dgdy
amn
¥ ; =7 - _ it {10024
T" - s 238
F — .
o o o
{4
=, 082 I ; '
3
_h.|l
Py 8, 882 WaVE
o | g, 871 VaAYE
47 pis
Fower -@,.883F wave
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BIrnorpn rmirrors

Bimorph mirror made from 2
piezoelectric wafers with an
electrode pattern between the
two wafers to control
deformation

Front and back surfaces are
electrically grounded.

——_—

7d \When Vis applied, one wafer
contracts as the other
expands, inducing curvature

Michelson Summer School,
Caltech, July 2004 66




BimpiphinieisSavel matched {o
curvature Jeruru A0

~ e+ Electrode patterncanbe
shaped to match

“Subapertures-in curvature
sensor

o Mirror shape W(X,y) obeys
Poisson Equation

V3 (VW + AV)=0
where A=8d,, /t°

d,, IS the transverse piezo constant
t is the thickness

V(x,Y) Is the voltage distribution

Michelson Summer School,
Caltech, July 2004




Nrleitzire Wi VIS carc
fﬂ]ffOfS.

“'WSHTQ‘HEW‘d‘&SS‘Of = MENMS: - —
ﬂmable mirrors, called MEMs micro-
DMs, has emerged in the past few electro-
years. mechanical
systems -

Devices fabricated using
semiconductor batch processing
technology and low power

‘U‘static actuation.

Inexpensive
($10/actuator instead of
$1000/actuator)

Michelson Summer School,
Caltech, July 2004 68



sostor Urnvarsiy VIEME

e =

Concent
= ctrostatically —

actuated Attachment ‘Membrane - Fabricatiéh: _SiliCOn
::awh — rplrror

micromachining
% (structural silicon and
sacrificial oxide)

Continuous mirror

- - = Actuation:
Boston University :
Boston MicroMachines Electrostatic parallel

plates -~
T ——

ently testing 1000
actuater MEMS
device

n Summer School,
ech, July 2004 69




= niversity (OKO) ———e—
— Unglgrlymg electrode array
Continueus membrane mirror

JPL, SY Tech., AFIT | |

Surface micromachined, segmented .
Lenslet cover for improved fill factor

Boston University
Surface micromachined
tinuous Membrane mirror

Surface micromachined
Tip and tilt only

Michelson Summer School,
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Nelffow ericriors rectice tricesiragla
orini-througn in 8U MEMS

T

pHE 1 e
F 1Ak

GRETHE DL P s g2 B

ou 2.5 21

PO Tum QAP IH Di.Pil08:P3_ »PE, Juw GAP EH 0L .P1,02.P3_ AP0 2un

S
-
o0 g

Lt Dimrsions (rcrometrs)
Lt Dimensions (ritometrs) Lt Dmersins (rcrometors)
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-1512.6 nm -1455 nm

0 um 8
0] um " 0] pm
2929
(a) 0 um 3161 (b) 0 um © 0 um 2218

Interferometric surface maps of 10x10 actuator arrays with 1 actuator deflected
— 2 um stroke —

— Surface quality:5
= i0mmirep rlOJ]JF/
— 7 kHz bandwidth
— M10 to A/20 flatness
— < 1mW / Channel

Michelson Summer School,
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~ -

(f]l' 4 (('Ir-IIT

= Pattern of'phaserdelay is “written” Glass Subiirte \ Ol b
onto back of LCD with light. Produces NNV WA
voltage change at each pixel, which  Zaee T 1 1z Readou Light
changes index of refraction in liquid _
crystal.

= |ncident light from AO system shines
onto front of LCD. It reflects from the
dielectric mirror, and double-passes
through the liguid crystal.

— =R Spatial resolution is very high esil T N/D Stigidcosa
(48OX480 plxels) he-nce n CorreCt Dhclectric Mirror Adigrmment Layer
ﬂ'large'numbel of Spatla Modes. Cross section of the Hamamatsu LC-SLM

T —. .
“But' it behaves as purely a piston
mirror, so correction per actuator is Problem: slow response time
not as high as for a continuous mirror.
Michelson Summer School,
Caltech, July 2004 73




p .--Lﬂ.ka

g error

= Physical interpretation: If we assume the DM does a perfect
correction of all modes with spatial frequencies < 1 /r, and
does NO correction of any other modes, then ax==0.26

B

= Equivalent to assuming that a DM Is a “high-pass filter”:

T —

"

Michelson Summer School,
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DM Design ar Actuators / segment
Piston only, 1.26 1 -
sguare segments

Piston+tilt, 0.18 3 3

Michelson Summer School,
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Toregualize Titting error for di
must be in ratio

= SO0 a piston-only segmented DM needs
(1.26/0.28 )%> = 6.2 times more actuators than a continuous face-

sheet DM
ﬁm.e-nted mirrerwith piston SHLB times more
AN continueuSHee e—\' 2ermiroerterachi Same fitting error:

N, = 3N, (0.18 /0.28 )35 = 1.8 N,

Michelson Summer School,
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= Deformable mirror acts as a “high-pass filter” —
-~ = Can't-cerrect-shortest-wavelength perturbations

= Different types of mirror do better/worse jobs

— Segmented DMs need more actuators than continuous face-sheet
DMs

= Design of DMs balances stiffness and thickness of face
sheet, stroke and strength of actuators, hysteresis, ability to

polish mirror with high precision .
face sh@eﬁ.bm;

ﬂe’DMs are well proven (contin

S hold promise of lower cost, more actuators

Michelson Summer School,
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The Center for Adaptive Optics Is proposing E
A the world’s most powerful AO system |

Extreme Adaptive Optics Planet Imager (ExXAOPI):
« A ~3000 actuator AO system for a 8-10m telescope

Science goals:
— direct detection of extrasolar planets through their near-IR emission
— characterization of circumstellar dust at 10x solar-system densities
Status: 2002-3 Conceptual design study
— System could be deployed in 2007
System to be funded by CfAO and external agency

Constructed by LLNL, UCSC, CIT/JPL, UCB

Michelson Summer School, Caltech,
July 2004 79



ExXAOPI design concept E

-2
Parameter Current Keck ExXAO
Subaperture size d 60 cm ~20cm
Number of subapertures 241 ~3000
DM size ~20 cm ~3 cm
System rate 670 Hz 2000 Hz
Controller VMM Predictive Fourier
(or other advanced type)
Strehl ratio at 1.65 um 0.2/0.4 0.9-0.95
Limiting magnitude R~ 13 R~7

(R~10 aux. mode)
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PSF shapes

CfAQ

In principle, a perfect
(or even near-perfect)
deformable mirror
should be able to
reproduce all the low
spatial frequencies in
the wavefront error
and dig out a deep
null

In practice, pupil-
sensor systems never
do this evenin
simulations

PSF intensity

Position (arcsec)
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Spatial filter implementation E
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Discovery region darkness as a function of
wavefront measurement and calibration error

Residual error=0 nm
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- Ground basedadaptwe optlcs systems correct for

o ———

~ atmospheric turbulence

= Systems are In operation at several telescopes
around the world — working mostly in the near IR -

= Technology Is challenging because of high speed
& high precision requirements
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