Wavefront Estimation and Control: Ground

> **Donald Gavel** UCO/Lick Observatory Laboratory for Adaptive Optics

Michelson Summer School – High Contrast Imaging in Astrophysics July 21, 2004

Outline

Purpose and requirements of ground-based adaptive optics

- **Technologies for atmospheric AO**
- **Measuring wavefronts**
- **Example 20 Figgs Universed Figgs Example 20 Figgs EQ 20 Figgs**
- **High contrast imaging challenges**

Adaptive optics

1. Correct for atmospheric turbulence 2. Secondary outcome: correct for imperfect telescope optics

Without Adaptive Optics

Michelson Summer School. Caltech, July 2004 **Caltech, July 2004 Caltech, July 2004**

Diffraction-limited image formation

$$
\sigma_{\varphi} = \left\langle \left[\phi(\mathbf{x}) - \frac{1}{A} \int_{pupil} \phi(\mathbf{x}) dx \right]^2 \right\rangle^{1/2} < \frac{\pi}{2}
$$

Atmospheric aberrations Atmospheric aberrations Images of a bright star, Arcturus

Lick Observatory, 1 m telescope

Speckles (each at diffraction limit of telescope)

Michelson Summer School, Caltech, July 2004 **Caltech, July 2004 Caltech, July 2004**

stratosphere

"Typical" C_n² profile of atmospheric turbulence

Light propagation through the turbulent atmosphere

• Index variations

$$
C_n^2(z) = \left\langle \delta n^2(x, y, z) \right\rangle_{x, y}
$$

 $\bullet\,$ Total optical path variation

$$
\phi(\mathbf{x}) = \left(\frac{2\pi}{\lambda}\right)_0^{\infty} \delta n(x, y, z) dz
$$

• Wavefront aberration statistics: Structure Function D $_{\phi}$

$$
D_{\phi}(r) = \langle \left[\phi(\mathbf{x}) - \phi(\mathbf{x} + \mathbf{r}) \right]^2 \rangle = 6.88 \left(r/r_0 \right)^{-5/3}
$$

Michelson Summer School, Caltech, July 2004 **Caltech, July 2004 Caltech, July 2004**

Image Formation

 $\bullet\,$ Field at the pupil plane

$$
E(u) = A(u) \exp(i \phi(u))
$$

 $\bullet\,$ Field at the focal plane

$$
F(\theta) = \frac{1}{\lambda} \int E(u) \exp(i2\pi u \cdot \theta/\lambda) du
$$

• Average PSF at the focal plane

$$
\langle PSF(\theta) \rangle = \langle |F(\theta)|^2 \rangle
$$

$$
\frac{1}{\lambda^2} \iint A(u)A(u+r) \langle \exp(i(\phi(u)-\phi(u+r)) \rangle) \langle \exp(-i2\pi r \cdot \theta/\lambda) du dr
$$

Image formation (continued) Image formation (continued)

$$
\langle PSF(\theta) \rangle = \langle |F(\theta)|^2 \rangle
$$

$$
\frac{1}{\lambda^2} \iint A(u)A(u+r) \exp(i(\phi(u) - \phi(u+r)))) \exp(-i2\pi r \cdot \theta/\lambda) du dr
$$

MTF of Pupil

$$
\langle PSF(\theta) \rangle = \frac{A_0}{\lambda^2} \int B_0(r) \exp\left(-\frac{1}{2}D_\phi(r)\right) \exp\left(-i2\pi r \cdot \theta/\lambda\right) dr
$$

MTF of Atmosphere

• <u>Strehl</u>: PSF(0) / PSF(0) |_{φ = 0}

A

 MTF of

Michelson Summer School, Caltech, July 2004 **Caltech, July 2004 Caltech, July 2004**

Maximize Strehl ⇔ Minimize mean square wavefront error $(i.e. S = B_A(0) \sim exp{-1/2 D_o}$, so make D_o small)

Michelson Summer School, Caltech, July 2004 **Caltech, July 2004 Caltech, July 2004**

Statistical characteristics of atmospheric wavefronts

5

Transverse correlation distance

Correlation time

$$
r_0 = \left[0.423 \left(\frac{2\pi}{\lambda}\right)^2 \int_0^\infty C_n^2(z) dz\right]^{-3/5}
$$

$$
D_\phi(\tau) = \left\langle \left[\phi(t) - \phi(t+\tau)\right]\right\rangle
$$

- Depends on λ
- Typical: r_o = 20 cm at λ = 0.5 μ

Correlation angle

$$
\theta_0 = \left[2.905\left(\frac{2\pi}{\lambda}\right)^2\int\limits_0^\infty C_n^2(z)z^{5/3}dz\right]^{-3/5}
$$

- Typical: θ_o = 4 arcsec at λ = 0.5 μ
- Mean height of turbulence: h $_{\rm 0}$ = r $_{\rm 0}/\theta$
- h0 = 8.2 km

$$
D_{\phi}(\tau) = \left\langle \left[\phi(t) - \phi(t+\tau) \right]^2 \right\rangle = \left(\frac{t}{\tau_0} \right)^{5/3}
$$

$$
\tau_0 = \left[2.91 \left(\frac{2\pi}{\lambda} \right)^2 \int_0^{\infty} C_n^2(z) \nu(z)^{3/5} dz \right]^{-3/5}
$$

-
- Typical: τ_ο = 3 ms at λ = 0.5 μ
• Mean wind velocity: v_o = 0.314 r_o/τ_ο
- $\bullet\,$ v $_{\rm 0}$ \sim 20 m/s

Atmospheric AO requirements Atmospheric AO requirements

Enough actuators to fit the wavefront Fit the stonary actuators to fit the wavefront

 $-$ Actuator spacing d ~ r $_{\rm 0}$

- **Fast enough update rate to keep up with the Fast enough update rate to keep up with the** atmosphere
	- Temporal bandwidth τ_CL ~ τ_0
- **Exallem Guidestar nearby science target**

– Isoplanatic patch: θ < θ $_0$

Enough light from the guidestar to measure the 4 wavefront accurately

Application Note

- One can consider any random wavefront φ – Optical fabrication or alignment errors $\mathcal{L}_{\mathcal{A}}$, where $\mathcal{L}_{\mathcal{A}}$ is the set of the **- Calibration errors** $\mathcal{L}_{\mathcal{A}}$, where $\mathcal{L}_{\mathcal{A}}$ is the set of the – Time-variable figure errors

an
Ma **Just plug in 2nd order statistical moments to** characterize imaging perfomance

–

…

Technologies for Atmospheric Technologies for Atmospheric **Adaptive Optics**

Lick Laser Guidestar Adaptive Optics System

Caltech, July 2004, July

Lick AO System Lick AO System

Michelson Summer School, Michelson Summer School,

3 m primary

-
- **0.8 m secondary 40 subabertures, d=43cm**
	- •**61 actuators, hex grid, d_a=50cm**
	- •**Max sample rate: 500 Hz**
	- •**Sodium layer LGS**

Caltech, July 2004, July

• **IR Cam: 2562 HgCdTe, 0.076 arcsec/pixel (Nyquist in K)**

The laser produces an artificial star in the mesospheric Sodium layer the mesospheric Sodium layer

A small spot is important:

- Laser beam quality (M²)
- $\bullet\,$ Launch telescope aperture $d_{\rho}^{}$ matched to r_o of atmosphere
- Translates to wavefront measurement accuracy

 $\sigma_{\text{wavefront}}$ measurement $=$ (spot size) $\times \frac{1}{\text{SNR}}$

Measuring the wavefront

Overview of wavefront sensing

By measure phase by measuring intensity variations Property

Difference between various wavefront sensor Difference between various wavefront sensor schemes is the way in which phase differences are turned into intensity differences

p. General block diagram: General block diagram: **Wavefront sensor**

How to use intensity to How to use intensity to measure phase?

Irradiance transport equation: A is complex field amplitude. – (Teague, 1982, JOSA 72, 1199)

Let
$$
A(x, y, z) = [I(x, y, z)]^{1/2} \exp[i k \phi(x, y, z)]
$$

Follow *I(x,y,z)* as it propagates along the z axis (paraxial as ray approximation: small angle w.r.t. z)

> **Wavefront curvature**

$$
\frac{\partial I}{\partial z} = -\nabla I \bullet \nabla \phi - I \nabla^2 \phi
$$

Wavefront tilt

Michelson Summer School, Caltech, July 2004 **Caltech, July 2004** Caltech, July 2004

Types of wavefront sensors Types of wavefront sensors

Direct" in pupil plane: split pupil up into subapertures in up into subapertures in some way, then use intensity in each subaperture to deduce phase of wavefront. Sub-categories:

- Slope sensing: Shack-Hartmann, shearing interferometer, pyramid sensing
- Curvature sensing
- Interferometric

- "Indirect" in focal plane: wavefront properties are deduced from whole-aperture intensity measurements made at or near the focal plane. Iterative methods - take a lot of time.

- Image sharpening, multidither
- Phase diversity

How to reconstruct wavefront from measurements of local "tilt"

Michelson Summer School, Caltech, July 2004 **Caltech, July 2004 Caltech, July 2004**

Shack-Hartmann wavefront sensor concept - measure subaperture tilts

Example: Hartmann test of one Keck segment (static) one Keck segment (static)

Reference flat wavefront Measured wavefront

Gary Chanan, UCI

Resulting displacement of centroids

Centroid Offset Display

Definition of centroid

 \blacksquare Each arrow represents an offset proportional to its length

15 pixels

Gary Chanan, UCI

How to measure distance a spot has moved on CCD? "Quad cell formula"

$$
\delta_x \approx \frac{b}{2} \left(\frac{(I_2 + I_1) - (I_3 + I_4)}{(I_1 + I_2 + I_3 + I_4)} \right)
$$
\n
$$
\delta_y \approx \frac{b}{2} \left[\frac{(I_3 + I_2) - (I_4 + I_1)}{(I_1 + I_2 + I_3 + I_4)} \right]
$$

Disadvantage: "gain" depends on spot size b which can vary during the night

 $\delta_{x,y} = \frac{b}{2} \frac{(difference of I's)}{(sum of I's)}$

Another disadvantage: signal becomes Another disadvantage: signal becomes nonlinear for large angular deviations nonlinear for large angular deviations

"Rollover" corresponds to spot being entirely outside of 2 quadrants

- $p_{pix} =$ number of detector pixels per subaperture
- P R = read noise in electrons per pixel
- **Then the signal to noise ratio in a subaperture for fast CCD** cameras is dominated by read noise, and

$$
SNR \approx \frac{St_{\text{int}}}{\left(n_{pix}R^2/t_{\text{int}}\right)^{1/2}} = \frac{S\sqrt{t_{\text{int}}}}{\sqrt{n_{pix}R}}
$$

See McLean, "Electronic Imaging in Astronomy", Wiley, Sect. 10.9

Measurement error from Shack-Hartmann sensing

Neasurement error depends on size of spot as seen in a subaperture, $\theta_{\hbox{\scriptsize b}}$, wavelength λ , subap size d , and signalto-noise ratio SNR:

(Hardy equation 5.16) (Hardy equation 5.16) *SNR r* $d -$ *SNR* $\sigma_{SNR} = \eta d \frac{\theta_b}{\sigma_{SNR}} \approx \eta d \frac{\lambda/r_0}{\sigma_{SNR}}$

Trade-off between dynamic range and sensitivity of Shack-Hartmann WFS

- **If spot is diffraction limited in a subaperture d,** linear range of a quad cell (2x2 pixels) is limited to $\pm \lambda_{ref}/2d$ radian or a half-wave.
- o. Can increase dynamic range by enlarging the spot (e.g. by defocusing it).
- \mathbf{u} . But uncertainty in calculating centroid ∞ width x N_{ph} ^{$1/2$} so centroid calculation will be less accurate.
- **Alternative: use more than 2x2 pixels per** subaperture. Decreases *SNR* if read noise per pixel is large (more pixels).

Curvature wavefront sensing **F. Roddier, Applied Optics, 27, 1223- 1225, 1998**

Laplacian (curvature)

Wavefront sensor lenslet shapes are different for edge, middle of pupil

 \blacksquare Example: This is what wavefront tilt (which produces image motion) looks like on a curvature wavefront sensor

– Constant I on inside – $-$ Excess I on right edge – Deficit on left edge

Simulation of curvature sensor response

 $Z_{1,-1}$

Difference Image

G. Chanan

Wavefront: pure tilt Curvature sensor signal

Curvature sensor signal for astigmatism

 $Z_{2,-2}$

Difference Image

Michelson Summer School, Caltech, July 2004 **Caltech, July 2004** Caltech, July 2004

G. Chanan

Third order spherical aberration aberration

$Z_{4,0}$

Difference Image

Michelson Summer School, Caltech, July 2004 Caltech, July 38

G. Chanan

Practical implementation of Practical implementation of curvature sensing

- **Use oscillating membrane mirror (2 kHz!) to vibrate rapidly** between I₊ and I₋ extrafocal positions
- **Measure intensity in each subaperture with an "avalanche with an "avalanche**" photodiode" (only need one per subaperture!)
	- Detects individual photons, no read noise, QE ~ 60%
	- $-$ Can read out very fast with no noise penalty

Measurement error from curvature sensing

Error of a single set of measurements is determined by photon statistics, since detector has no noise:

$$
\sigma_{cs}^2 = \pi^2 \frac{1}{N_{ph}} \left(\frac{\theta_b d}{\lambda}\right)^2
$$

where $\Theta_{\rm b}$ = apparent guide star size, λ = wavelength, d = subaperture diameter and *N_{ph}* is no. of photoelectrons per subaperture per sample period

Error propagation when the wavefront is reconstructed numerically using a computer scales poorly with no. of subapertures N:

– (Error)_{curvature} ∝ N, whereas (Error)_{Shack-Hartmann} ∝ log N

Advantages and disadvantages of curvature sensing

B Advantages:

- Lower noise \Rightarrow can use fainter guide stars than S-H
- Fast readout \Rightarrow can run AO system faster
- Can adjust amplitude of membrane mirror excursion as "seeing" conditions change. Affects sensitivity.
- Well matched to bimorph deformable mirror (both solve Laplace's equation), so less computation.
- $-$ Curvature systems appear to be less expensive.

Disadvantages:

– Avalanche photodiodes can fail if too much light falls on them. They are bulky and expensive. Hard to use a large number of them.

Shearing Interferometry

Interfere a wavefront with itself, slightly shifted in x , y **- Intensity 1+sin(dφ/dx),** $1+sin(d\phi/dy)$ **Reconstruct phase** from slope by solving from slope by solving $\nabla \cdot \mathbf{s} = \nabla^2 \phi$ $\mathbf{s} = \nabla \phi$

Shearing Interferometry

B Advantages

- $\mathcal{L}_{\mathcal{A}}$, where $\mathcal{L}_{\mathcal{A}}$ is the set of the $-$ Can adjust shear as seeing conditions change
- $\mathcal{L}_{\mathcal{A}}$, where $\mathcal{L}_{\mathcal{A}}$ is the set of the – Guide star extent affects fringe visibility, more easily subtracted to normalize slope sensitivity
- $-$ Information/photon roughly the same as Hartmann sensor, noise propagator the same

Disadvantages

- Phase unwrapping issue
- More difficult to implement, splitting can be inefficient

Pyramid Sensing

Pyramid Sensing

 \blacksquare **Essentially a "transposed" Hartmann sensor**

Hartmann and Pyramid are variations of the knife-edge test

- $-$ Pyramid: the knife edge is the pyramid edge
- Hartmann: the knife edge is the pixel boundary

Direct Phase Detection

Mach-Zhender Point Diffraction Interferometer

Controlling the wavefront

Overview of wavefront correction

- $\textcolor{red}{\bullet}$ Divide pupil into regions of size r_o , do "best fit" to $\textcolor{red}{\bullet}$ wavefront
- **Several types of deformable mirror (DM), each has Several types of deformable mirror (DM), each has** its own characteristic "fitting error"

 $\overline{\sigma_{fittina}^2} = \overline{a}_F (d / r_0)^{5/3}$ rad²

Duther requirements: dynamic range (the farthest dynamic range (the farthest excursion the mirror surface can take), frequency response, influence function of actuators, surface quality (smoothness), hysteresis, power dissipation

Typical role of actuators Typical role of actuators

- **Example 2 are glued to back of** glass mirror
- **When you apply a voltage** (PZT) or a magnetic field (PMN) to the actuator, it expands or contracts in length, thereby pushing or pulling on the mirror

Types of actuator: Types of actuator: Piezoelectric

Polarization

PZT (lead zirconate titanate) gets longer or shorter when you apply V **Stack of PZT ceramic disks with Grack of PZT ceramic disks with** integral electrodes 24 22 20 **Typically 150 Volts** 18 16 \Rightarrow ∆x ~ 10 microns 14 12

- 10-20% hysteresis:

Types of actuator: PMN Types of actuator: PMN

- Lead magnesium niobate (PMN) **- Magnetistrictive:**
	- –Material gets longer or shorter in response to an applied magnetic field
- **Can "push" and "pull" if a magnetic bias is** applied
- Somewhat higher hysteresis than PZT: ~ 20%

In general, hysteresis is bad for AO

" Want response to voltage to be linear and one-toone

■ With hysteresis, response is nonlinear and nonunique24 22

DM requirements

- Dynamic range: stroke (total up and down range) – Typical "stroke" for astronomy \pm several microns. For vision science up to 10 microns **- Temporal frequency response:** – DM must respond faster than coherence time $\bm{\tau}_0$ **Influence function of actuators:** $\mathcal{L}_{\mathcal{A}}$, where $\mathcal{L}_{\mathcal{A}}$ is the set of the – Shape of mirror surface when you push just one actuator (like Greens' function) $-$ Can optimize your AO system with a particular influence function, but pretty forgiving

DM requirements, part 2

Surface quality:

- –Small-scale bumps can't be corrected by AO scale bumps can't be corrected by AO **- Hysteresis of actuators:**
- –Want actuators to go back to same position when you apply the same voltage **Power dissipation:**
	- –Don't want too much resistive loss in actuators, because heat is bad ("seeing", distorts mirror) because heat is bad ("seeing", distorts mirror)
	- –Lower voltage is better (easier to use, less Lower voltage is better (easier to use, less power dissipation)

Types of deformable mirrors: Types of deformable mirrors: large

- **Segmented**
	- –– Made of separate segments with small gaps
	- –– Each segment has 1 - 3 actuators and can correct:
		- **Piston only (in and out), or**
		- **Piston plus tip-tilt (three degrees of freedom) Piston plus tip-tilt (three degrees of freedom)**
- **E** "Continuous face-sheet"
	- – $-$ Thin glass sheet with actuators glued to the back
	- Zonal (square actuator pattern), or
	- Modal (sections of annulae, as in curvature sensing)
- **Bimorph**
	- ––2 piezoelectric wafers bonded together with array of electrodes between them. Front surface acts as mirror.

Types of deformable mirrors: Types of deformable mirrors: small

- Liquid crystal spatial light modulators

- $\mathcal{L}_{\mathcal{A}}$, where $\mathcal{L}_{\mathcal{A}}$ is the set of the $-$ Technology similar to LCDs for computer screens
- $\mathcal{L}_{\mathcal{A}}$, where $\mathcal{L}_{\mathcal{A}}$ is the set of the – Applied voltage orients long thin molecules, changes index of refraction
- Response time too slow?

- MEMS (micro-electro-mechanical systems)

- Fabricated using microfabrication methods of the $\,$ integrated circuit industry
- Many mirror configurations possible
- Potential to be very inexpensive

Light

Segmented deformable mirrors: concept mirrors: concept

- $\overline{}$ Each actuator can move just in piston (in and out), or in piston plus tip-tilt (3 degrees of freedom)
- **Fitting error:** $\sigma_{fittino}^2 = a_F (d/r_0)^{5/3}$
- Piston only: $a_{\rm F}$ = 1.26
- **3 degrees of freedom:** a_F = 0.18 $\,$

actuators mirror segments

Segmented deformable mirrors: Example

- **NAOMI (William Herschel I)** Telescope, UK): 76 element segmented mirror
- \blacksquare Each square mirror is mounted on 3 piezos, each of which has a strain gauge
- **Strain gauges provide** independent measure of movement, are used to reduce hysteresis to below 1% (piezo actuators have \sim 10% hysteresis).

Largest segmented DM: Largest segmented DM: **Thermotrex**

= 512 segments Each with 3 dof Overall diam. 22 cm

Built in early 1990's for military

Continuous face-sheet DMs: Design considerations

Facesheet thickness must be large enough to maintain in flatness during polishing, but low enough to deflect when pushed or pulled by actuators

Thickness also determines "influence function" Thickness also determines "influence function"

– Response of mirror shape to "push" by 1 actuator

EXTERS HAVE TO be stiff, so they won't bend sideways as Actuators have to be stiff, so they won't bend sideways as the mirror deflects

Continuous face-sheet DM's: **Fitting error**

 $\sigma_{fitting}^2 = a_F (d/r_0)^{5/3}$ rad²

where a_F = 0.28 $^{\circ}$

Michelson Summer School, Caltech, July 2004 **Caltech, July 2004 Caltech, July 2004**

Continuous face-sheet DM's: **Xinetics product line**

Michelson Summer School, Caltech, July 2004 **Caltech, July 2004 Caltech, July 2004**

Front view of Xinetics DM (Keck)

(paper coasters)

349 degrees of freedom; 250 in use at any one time

Rear view of Xinetics 349 actuator DM used in Keck Telescope AO system

Push on four actuators, measure deflection with an optical interferometer

Michelson Summer School. Caltech, July 2004 **Caltech, July 2004 Caltech, July 2004**

Bimorph mirrors

 $\mathbf b$

Bimorph mirror made from 2 piezoelectric wafers with an electrode pattern between the two wafers to control deformation

Front and back surfaces are electrically grounded.

When V is applied, one wafer contracts as the other expands, inducing curvature

Bimorph mirrors well matched to Bimorph mirrors well matched to curvature sensing AO systems

 \bullet Electrode pattern can be shaped to match subapertures in curvature sensor

• Mirror shape $W(x,y)$ obeys **Poisson Equation**

$$
\nabla^2 (\nabla^2 W + AV) = 0
$$

where $A = 8 d_{31} / t^2$

 d_{31} is the transverse piezo constant *t* is the thickness

 $V(x, y)$ is the voltage distribution

 $+ + + +$

What are MEMs deformable mirrors?

A promising new class of deformable mirrors, called MEMs DMs, has emerged in the past few years.

Devices fabricated using semiconductor batch processing technology and low power electrostatic actuation.

Potential to be very inexpensive (\$10/actuator instead of \$1000/actuator)

MEMS: MEMS: micro-microelectro-electro electromechanical mechanical mechanical systems systems systems

Boston University MEMS Concept

Membrane

mirror

Continuous mirror

Boston University Boston MicroMachines

Fabrication: Silicon micromachining (structural silicon and sacrificial oxide)

E Actuation: **Electrostatic parallel** plates

Τ **Currently testing 1000** actuator MEMS device

In Summer School. Caltech, July 2004 Caltech, July 2004

Some other MEMS DM concepts Delft University (OKO) Underlying electrode array Continuous membrane mirror JPL, SY Tech., AFIT Surface micromachined, segmented Lenslet cover for improved fill factor **Boston University** Surface micromachined Continuous membrane mirror Texas Instruments Surface micromachined Tip and tilt only

Narrow anchors reduce undesirable Narrow anchors reduce undesirable print-through in BU MEMS

Michelson Summer School, Caltech, July 2004 Caltech, July 71

 1 2 3 4 5 6 ⁷ 8 9 10 Lateral Dimensions (micrometers)

Lateral Dimensions (micrometers)

Lateral Dimensions (micrometers)

Influence functions for 100 actuator Influence functions for 100 actuator **BU MEMS deformable mirrors**

Interferometric surface maps of 10x10 actuator arrays with 1 actuator deflected

- 2 µm stroke
- Surface quality 50 nm rms
- 10 nm repeatability
- 7 kHz bandwidth
- λ /10 to λ /20 flatness
- < 1mW / Channel < 1mW / Channel

Liquid crystal devices (LCD's = spatial light modulators) (LCD's = spatial light modulators)

- \blacksquare Pattern of phase delay is "written" onto back of LCD with light. Produces voltage change at each pixel, which changes index of refraction in liquid crystal. crystal.
- \Box Incident light from AO system shines onto front of LCD. It reflects from the dielectric mirror, and double-passes through the liquid crystal.
- **Spatial resolution is very high** Spatial resolution is very high (480x480 pixels), hence it can correct (480x480 pixels), hence it can correct a large number of spatial modes.
- \Box \blacksquare But it behaves as purely a piston mirror, so correction per actuator is not as high as for a continuous mirror. not as high as for a continuous mirror. **Problem: slow response time Problem: slow response time**

Cross section of the Hamamatsu LC-SLM

Michelson Summer School. Caltech, July 2004 Caltech, July 73

Fitting error

 $\sigma_{fitting}^2 = a_F (d / r_0)^{5/3}$ rad²

Physical interpretation: If we assume the DM does a perfect correction of all modes with spatial frequencies $<$ 1 / $\rm r_{\rm o}$ and does NO correction of any other modes, then a_{F} = 0.26

 \blacksquare Equivalent to assuming that a DM is a "high-pass filter":

– Removes all disturbances with low spatial frequencies, does nothing to correct modes with spatial frequencies higher than $1/r₀$

> Michelson Summer School, Caltech, July 2004 Caltech, July 74

Fitting error and number of Fitting error and number of actuators actuators $\sigma_{fitting}^2 = a_F (d / r_0)^{5/3}$ rad²

Consequences: different types of Consequences: different types of DMs need different actuator counts, for same conditions

To equalize fitting error for different types of DM, number of actuators must be in ratio

$$
\left(\frac{N_1}{N_2}\right) = \left(\frac{d_2}{d_1}\right)^2 = \left(\frac{a_{F_1}}{a_{F_2}}\right)^{6/5}
$$

So a piston-only segmented DM needs (1.26 / 0.28)^{6/5} = 6.2 times more actuators than a continuous facesheet DM

Segmented mirror with piston and tilt requires 1.8 times more actuators than continuous face-sheet mirror to achieve same fitting error:

 $\mathsf{N}_\text{\tiny{1}}$ = 3 $\mathsf{N}_\text{\tiny{2}}$ (0.18 / 0.28) $^{6/5}$ = 1.8 $\mathsf{N}_\text{\tiny{2}}$

Michelson Summer School, Caltech, July 2004 Caltech, July 76

Summary of main points

Deformable mirror acts as a "high-pass filter" pass filter

- $-$ Can't correct shortest-wavelength perturbations
- **Different types of mirror do better/worse jobs**
	- Segmented DMs need more actuators than continuous face-sheet **DMs**
- **Design of DMs balances stiffness and thickness of face** sheet, stroke and strength of actuators, hysteresis, ability to polish mirror with high precision
- **Large DMs are well proven (continuous face sheet, bimorph** are used most often) are used most often)
- **EXT MEMs DMs hold promise of lower cost, more actuators**

High Contrast Imaging

The Center for Adaptive Optics is proposing the world's most powerful AO system

Extreme Adaptive Optics Planet Imager (ExAOPI):

- •**A ~3000 actuator AO system for a 8-10m telescope**
- • **Science goals:**
	- direct detection of extrasolar planets through their near-IR emission
	- characterization of circumstellar dust at 10x solar-system densities
- \bullet **Status: 2002-3 Conceptual design study**
	- System could be deployed in 2007
- •**System to be funded by CfAO and external agency**
- •**Constructed by LLNL, UCSC, CIT/JPL, UCB**

ExAOPI design concept

 $\overline{\mathbf{1}}$

 $30 \times 30 \times 0$

PSF shapes

- • **In principle, a perfect (or even near-perfect) deformable mirror should be able to reproduce all the low spatial frequencies in the wavefront error and dig out a deep null**
- • **In practice, pupilsensor systems never do this even in simulations**

Spatial filter implementation

Michelson Summer School, Caltech, **July 2004** 83

Discovery region darkness as a function of wavefront measurement and calibration error

Michelson Summer School, Caltech, **July 2004** 84

Summary

- **Example 3 Ground based adaptive optics systems correct for** atmospheric turbulence
- **Systems are in operation at several telescopes** around the world – working mostly in the near IR
- **Technology is challenging because of high speed** & high precision requirements & high precision requirements
- **Planet imaging requires "extreme" adaptive optics -** $-$ using a whole new generation of AO $\,$ technologies