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The VLT Interferometer
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The First Two VLTI Auxiliary 
Telescopes (ATs)
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Astrometric Measurement with 
an Interferometer
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PRIMA Operational Principles
Extremely high precision (many things need to 
be done to 1/1000th of a wavelength)

⇒
Use only ATs for high-precision astrometry
Differential measurements wherever possible
Monitoring of system and environment
Systematic data reduction and calibration
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Some Complications and their 
Solutions

Atmosphere induces random variations of 
stellar position 
Internal motion of mirrors (vibrations, thermal 
drifts) cause delay errors

⇒
Observe two stars simultaneously
Monitor internal pathlength with laser 
metrology system
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Atmospheric Limitation of 
Narrow-Angle Astrometry
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Dual-Star Interferometry
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PRIMA = Phase-Referenced Imaging 
and Microarcsecond Astrometry

VLTI infrastructure for dual-star interferometry
• Dual-star modules at ATs and UTs
• Delay lines which support beams from two stars
• Differential delay lines
• Beam combining instruments for primary and 

secondary star
• Metrology system to tie delay measurements 

together
• Software and operational concepts

Phased implementation has started
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VLTI Delay Lines
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Differential Delay Line Design 
(PRIMA Planet Search Consortium)
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PRIMA Star Separator 
(TNO-TPD, Delft, Netherlands)
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PRIMA Fringe Sensing Units 
(Alenia Spazio, Italy)
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PRIMA Metrology System 
(ESO and IMT, Switzerland)
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The PRIMA Planet Search 
Consortium

U Geneva
• IMT Neuchâtel
• EPF Lausanne

MPIA Heidelberg
U Leiden
• ASTRON

Close interaction 
and collaboration 
with ESO
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Motion of the Sun, Viewed 
Pole-on from 100 pc

prad

Amplitude:
500 pico-radians
100 micro-arcsec
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Requirements for Astrometric 
Planet Detection
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Deriving Inclination from 
Astrometric Observations

Circular Orbit
Face-on

Inclined
Circular Orbit
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Face-on
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Goals of Astrometric Planet 
Surveys

Accurate mass determination for planets detected 
in radial-velocity surveys (no sin i ambiguity)
Frequency of planets around stars of all masses
• Relation between star formation and planet formation

Gas giants around pre-main-sequence stars
• Time scale of formation, test formation theories

Coplanarity of multiple systems
• Test interaction and migration theories

Search for Solar System analogs
• Detection of icy or rocky planets
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Simulation of Planet Observations 
with the VLTI
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PRIMA Error Budget
Step 1: Construct tree of all anticipated error 
sources for PRIMA
• Systematic approach needed, but still danger of 

overlooking important effects
• Methodological difficulty: many differences of 

large numbers
Step 2a: Allocate admissible errors (top-down)
Step 2b: Estimate predicted errors of 
components / sub-systems etc.
Step 3: Iterate until 2a and 2b match
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PRIMA Astrometry Error Tree
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Principal Current Error Budget 
and Calibration Activities

Fringe tracking and FSU output
Dispersion effects and spectral channels in FSU
Metrology zero-point calibration
Polarization calibration
Calibration of narrow-angle baseline
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Fringe Measurement Requirements
Fringe measurement precision is essential
• Substantially better than 1° needed

Reliable fringe identification is essential
• Fringe jumps are unacceptable
• Dispersed fringe detection is the best scheme

Fringe tracking robustness is important
• Atmosphere can be very unstable (Kolmogorov

predictions cannot be used)
• Need to recover from spells of bad seeing quickly
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Types of Error
Random errors with zero mean
Systematic errors which can be accurately 
corrected
Systematic errors which are difficult to correct
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Random Errors with Zero 
Mean

Eliminated by: Averaging many independent 
measurements – residuals easily determined by 
scatter in independent measurements
Example: Effect of atmospheric turbulence after 
systematic contribution subtracted
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Easily Corrected Systematic 
Errors

Eliminated by: Accurate measurements of well-
defined, easily measured parameters and 
application of basic physics
Example: Relativistic effects due to the motion 
of Paranal with respect to the solar system 
center, and due to the gravitational potential 
well of the Sun and planets
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Difficult Systematic Errors
Eliminated by: Minimizing the error through 
the hardware design or observing strategy, and 
then trying to estimate the remaining error as 
best as possible
Examples: Effect of cold outside air blowing 
through the VLTI ducts and tunnels, permanent 
or seasonal “wedge” of atmosphere from sea to 
mountains
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Resolution of Problems
If a single error term is too large, one can take 
one of several measures to solve the problem:

1. Change the observation strategy
2. Change the calibration strategy
3. Improve the hardware performance
4. Change the hardware design
Error budget and Calibration / Operation 
Strategy are intimately related

• Error budget reflects residuals after calibration
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PRIMA Calibration Strategy
PRIMA data are essentially quadruple-differential

1. Target – Reference 
2. Stellar beam – Metrology beam
3. Beam swap 1 – Beam swap 2
4. Sky position at time 1 – Sky position at time 2

In addition, there is a complicated relation between 
sky position and observed delay
There is no way to meet specifications without getting 
all differences right  ⇒ calibration and observing 
strategy are essential
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Difference Target – Reference 
Random error: atmospheric anisoplanatism
• Fundamental limitation of ground-based astrometry
• Can in principle be integrated out

Systematic error: PRIMA metrology zero point
• Calibrated by injecting the light from the two stars 

alternatingly into the two feeds of the star separator 
(“beam swap”)
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Difference Starlight – Metrology
Three fundamental sources of error
• Dispersion between the two wavelengths
• Beam walk on optical surfaces (different footprint 

of stellar and metrology beams)
• Misalignment (metrology not on optical axis of 

telescope)
Many complicated terms in error budget
• Temperature differences, … 
• Alignment, straightness of delay line rails, … 
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Difference Beam Swap 1 – Beam 
Swap 2

Good alignment of image de-rotator / star 
separator required
Sensitive only to non-linear optical path drifts 
in light ducts (reduces some of the problems on 
previous slide)
Introduces more stringent requirements on 
speed of re-acquisition
Potential interruption of metrology beam during 
polarization swap
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Difference Time 1 – Time 2
Some errors (e.g., “wedge”) can be minimized 
by always observing at same hour angle
• Implications for scheduling (“absolute time driven” 

versus “integration time driven”)
Observing at many hour angles during one 
night produces over-constrained system
• Enables consistency checks
• Alternative calibration strategy
• Implications for observing efficiency
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Metrology Zero-Point Calibration 
Strategy

Use image de-rotator to swap target and 
reference star beams
Each observation consists of a few (perhaps 2) 
“swap cycles”
Eliminates metrology zero point
Applies time filter to differences between 
metrology and star light
• Solves main issue with dispersion between starlight 

and metrology in the delay lines and feed system
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Polarization Calibration
PRIMA FSUs use S polarization for measuring 
fringe sine, and P for fringe cosine
Potential concerns:
• Phase shift between S and P polarizations
• Difference in efficiency for S and P
• Polarized stars

Calibration strategy: exchange roles between S 
and P in (or close to) FSUs
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Preferred Implementation
Exchange role of S and P inside FSU by 
rotating λ/4 plate by 90°
• Position 1: sine from S, cosine from P
• Position 2: cosine from S, sine from P

Can construct complete set of observables (A, 
B, C, D) from S and P separately
• Non-simultaneous, but should be ok for referenced 

phase
No loss in efficiency, complete symmetry
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Operational Implications of Beam 
Swap Strategy

Each observation broken into short segments
• Typical sequence: 1s, 2s, 2p, 1p, 1p, 2p, 2s, 1s

Time needed to swap beams must be minimized
• For example 2 minutes integration, 30 sec for swap

Role of FSU1 and FSU2 get exchanged with 
each swap
• Fringe tracking signal alternates between FSUs
• Detector read time has to be changed
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Baseline Calibration
Requirement on knowledge of baseline vector
is of order 50 µm
One of the most difficult terms in error budget
• What defines baseline (very complex issue)?
• How sophisticated a telescope model do we need?
• Transfer of wide-angle to narrow-angle baseline

Baseline calibration strategy (observations of 
stars with wide sky distribution) depends on 
attainable cadence of observations
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Wide-Angle Baseline
The wide-angle baseline is defined by delay 
measurements of many stars distributed over 
the sky
• Can be related to telescope pivot point
• Can be calibrated from science data (if they have 

sufficient sky coverage) or additional observations
Main error sources: 
• Non-intersecting telescope axes
• Telescope flexure
• Temporal drift of optical elements in beam train
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Narrow-Angle Baseline
The narrow-angle baseline is defined by the 
mechanism that combines the starlight with the 
metrology (STS)
In the PRIMA STS design, the narrow-angle 
baseline is defined by the image of the “optical 
pivot point” of M11 in the entrance pupil
• The “optical pivot point” is defined by the footprint 

of the metrology on M11
The narrow-angle baseline must be computed 
from opto-mechanical model of the ATs
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Baseline Calibration Strategy
Collect delay data from one or several nights
Use telescope model with delay data to 
compute separation vector of telescope pivot 
points (wide-angle baseline)
Use optical prescription and FEM of telescopes 
to compute narrow-angle-baseline
Main difficulty: mechanical stability of ATs, 
tight tolerance of knowledge for M1 – M10
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Data Analysis Facility
Data base with all observations for several 
years
Tools to select and visualize sub-sets of data
Identification and removal of trends
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Proper Motion, Parallax, and 
Planet Signature

d = 50 pc
µ = 50 mas yr-1

Mp = 15 Mjup

e = 0.2
a = 0.6 AU
Planet signature 
shown 30×
exaggerated
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Why Do We Need a DAF?
Astrometric precision requirement: 50 prad
• Equivalent OPD precision requirement 5 nm / 100m

Data have eleven (!) significant digits
No way to check integrity without doing 
quadruple-differencing first
Quadruple-difference dominated by parallax / 
proper motion
• 10,000 times larger than precision requirement
• Natural time scale 1.5 years
• Only three free parameters ⇒ can (must) be fitted
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Need for a DAF (cont’d)
If something goes wrong, we’ll know 1.5 years 
later!
DAF is an indispensable tool for debugging the 
interferometer
• Error budget is complicated – we may overlook 

important terms
• 1.5 year time scale  ⇒ record everything

Time differencing  ⇒ need to do consistent
data analysis for years worth of data
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More Benefits of DAF / IDAF
Systematic calibration of instrument (not of individual 
data sets)
• Better quality of calibration
• More efficient observing
• Better diagnosis of instrumental problems
• Instrument useable by whole community

Version control for calibrated data
• Needed for determining motions over many years
• Ability to improve calibration when problems are identified

Minimization of overall calibration effort
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Summary
First phase of PRIMA optimized for astrometry 
with the 1.8m Auxiliary Telescopes
• Goal to reach 10 µas class precision
• Planet detection is the main scientific driver

PRIMA implementation is well underway
• All components sub-contracted by ESO to various 

vendors
• Differential delay lines, operational analysis, and 

data analysis software by Planet Search Consortium
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Positions Available!
Openings for postdocs
and temporary staff
Some prior experience in 
interferometry desired
Exciting project, pleasant 
international team
See me during the break 
for more information!
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