

STEPS: Stellar Planet Survey

STEPS

Stuart Shaklan and Steve Pravdo Jet Propulsion Laboratory California Institute of Technology

July 29, 2005

Michelson Summer School Caltech

- Started December, 1997. Now in 8th year.
- 30 nearby M-dwarf stars, V= 12-16.
- Search for > 1 MJ planets and brown dwarfs
- 4k x 4k CCD, 2 arcmin field
- Collaborators: Fritz Benedict (spectroscopy), James Lloyd (AO), Shri Kulkarni (AO), Todd Henry (HST)
- STEPS papers referenced on last page of this presentation
 - Discovery of M-dwarf and Brown Dwarf companions to M-dwarf stars.

Instrument

- 4K Loral CCD
- LN2 Dewar
- SDSU (Leach) Electronics
 - 4 amplifiers
 - Bin pixels 2x2
 - 200 kpix read rate
- Binned pixel scale = 78 mas/pix
- Mounts at straight-Cass, f/16 on the Palomar 200 in. telescope.
 - Was also used at Keck II in 1998.
 - Window is high quality lambda/30 p-v surfaces.
 - Focus term due to vacuum leads to plate scale magnification which is absorbed by the conformal model.

- Targets should not saturate detector too quickly
 - V>12
- Need reference stars
 - Gal. latitude < 30 deg.
- Need signal > 1 mas with M_J planet in 10 yr orbit
 - Nearby, low-mass
- Limited telescope time (~ 8 scheduled nights/yr)
- These criteria led to selection of 30 nearby M-dwarfs.
 - Earlier stars are too bright and their signals are too small.
 - Reference stars are typically V<19.5

- Large telescopes dramatically increase astrometric efficiency. (Lindegren 1980, Shao and Colavita 1992).
 - r.m.s. motion ~ $\theta/D^{2/3}$, θ = field, D = tel. diam.
- We typically achieve 300-500 micro-arcsec s.e.m. of target relative to reference frame in 20 1-minute exposures.
 - Systematic error sources:
 - DCR: correct 10's of mas
 - Dust, window,
 - Electronics???

FIG. 2.—The square root of the Allan variance of the positional uncertainty of 15 stars in NGC 2420 observed with the Palomar 5 m. *Top*: Declination. *Bottom*: Right ascension.

Pravdo and Shaklan, 1996 ApJ 465, 264

- Typically 20 1-minute exposures per field.
 - Standard error of mean < 1 mas</p>
- Try to stay within 1 hr of meridian.
 - Minimize DCR
- **Repoint from run-to-run to within a few arcsec.**
 - Minimize impact of local CCD and window distortion
- Dither pointing in square pattern, 1 arcsec steps.
 - Reduce effect of hot pixels, local gradients....
- No fine guiding, no AO, just simple imaging.
 - PSF of all sources across the FOV are nearly identical
- Typically observe 2 or 3 consecutive nights.
 - Helps distinguish systematic vs. stochastic noise
- Compute nightly statistic: mean position and standard error of the mean relative to reference frame.

Data Processing Sequence

Stars extracted from one night, one field

- Step 1: Flatfield image
 - Fit quadratic function in each of the 4 quadrants.
- Step 2: Find stars, center in 60 pixel (4.7 arcsec) box
 - Center the star in the box using a standard centroid
 - (This is not the high precision centroid.)
- Step 3: Remove horizontal artifacts
 - Occasionally we see noise pick-up during readout, appears as aperiodic horizontal offset.
 - **Step 4: Median filter images**
 - Use 7-pixel wide median filter line by line in x (Dec) then in y (RA).
 - Removes hot-pixels, cosmic rays

STEPS Cross-Correlation Centroiding

- *Step 1*: Integrate images in 1-dimension.
 - We will compute x and y centroids in separate steps. We do not do joint (x,y) estimation.
- *Step 2*: Compute FFT of 1-D image.
- Step 3: Estimate slope at origin using 1st point (1 cycle per box) of FFT.
- *STEP 4*: Compare slope to that of target star.
 - Slope difference yields relative centroid position.
- *NOTE 1*: Slope at origin of FFT is mathematically identical to the centroid.
 - Our first frequency value is an approximation to the slope.
 - *NOTE 2*: Constant background bias gives delta-function at origin, but does not change slope.

- Insensitive to background bias
 - Constant background does not need to be estimated and does not affect position measurement.
- Good SNR
 - Most of the energy is in the first spatial frequency.
 - High frequencies can be used and weighted by the FFT amplitude function.
 - We currently do not use these points
- No separate matched-filtering function to compute
 - The target star is the image template
- No resampling required
 - Image is already sampled well above Nyquist.
 - Fast
 - 1-D 60 point FFT

• We generally use a 6-term model:

RA = a * RA + b * Dec + cDec = d * RA + e * Dec + f

- This requires a minimum of 3 reference stars.
- Allows different magnification in two axes
- Cross term (RA*Dec) is needed for 'keystone' caused by CCD tilt, system misalignment.
 - Expected to be negligible, ~ 150 uas peak at edge of 1 arcminute radius for 200 um of CCD tilt.
 - Also should be very stable because CCD is hard-mounted.
 - Performance is only slightly better than simple rotation/translation model.

Shaklan & Pravdo - 17

Motion of Center of Light about Center of Mass: Photocentric Orbit

How to determine companion mass

STEPS determines orbital parameters (P, ecc, incl, epoch, orientation) and photocentric motion α .

A <u>high-resolution image</u> determines the flux ratio (β). It also determines scale (a) when a companion is visible.

Case 1: no light from companion ($\beta = 0$) STEPS constrains c=f³*M_{tot}

Mass-Luminosity Relationship provides M₁

 M_2 is determined from $M_{tot} = M_1 + M_2$ and c

Case 2: Image detects a companion STEPS constrains $c=f^{3*}M_{tot}$ Image determines scale (a) and flux ratio (β). Mass ratio is determined from $f = \alpha/a + \beta$ M_{tot} is determined from Kepler $M = a^3/P^2$

GJ 777B Residuals after fitting PM and Parallax

One possible orbit plotted with the data

STEP

GJ 164 One possible orbit plotted with data

Shaklan & Pravdo - 24

GJ 802 One possible orbit plotted with data, Keplerian frame

GJ 802 Photocentric Orbit vs. Mass

STEPS

The points show the results of ~11,000 Monte Carlo trials for the GJ 802 orbit. We plot $(f-\beta)$ vs. M_{tot} for all models falling within the one-sigma confidence limits. Superimposed on the data are the composite MLR curve in the *V*-band based upon observations (Henry et al. 1999) and the MLR points from the model of Baraffe et al. (2003).

GJ 802b Mass vs. Eccentricity

<u> </u>	1	
RA $(2000)^{a}$	2000) ^{<i>a</i>} 20 43 19.41	
Dec $(2000)^{a}$	+55 20 52.0	
V^b	14.69	
J^c	9.563 ± 0.023	
H^{c}	9.058 ± 0.019	
K ^c	8.753 ± 0.013	
Туре	dM5e	
Parallax ^d (mas)	63 ± 5.5	
Proper Motion ^e (mas y ⁻¹)	1915 ± 13	
Position Angle ^e (deg)	27.6 ± 0.6	

Table 1. GJ 802 Known Properties

Table 2. STEPS Astrometric Measurements^a of GJ 802

Relative Parallax (mas)	61 ± 2
Proper Motion (mas y ⁻¹)	1933 ± 1
Position Angle (deg)	27.0 ± 0.1
Period (y)	3.14 ± 0.03
Total Mass (Mo)	0.215 ± 0.045
Semi-Major Axis (AU)	1.28 ± 0.10
Eccentricity, e	0.56 ± 0.30
Inclination (deg)	80.5 ± 1.5
Lon. Asc. Node ^b (deg)	17.5 ± 3.5
Primary Mass, Mpri (Mo)	0.160 ± 0.03
Secondary Mass, M _{sec} (Mo)	0.057 ± 0.021

Shaklan & Pravdo - 28

STEPS progress through December, 2004

		M-Dwarf	BD	Clear			AO	AO
Target	Туре	Companion	Companion	Signal	Flatline	TBD	Signa	al Null
1	M5			-		Х		
2	M5				Х			
3	M4			Х				
4	M4					Х		Х
5	M3.5					Х		
6	M3	Х					Unpub x	
7	M4.5	Х					GJ 164 ×	
8	M5					Х		
9	M4.5					Х		
10	M5			х				
11	M3.5	Х					Unpub x	
12	M5			х				
13	M4					Х		
14	M5					Х		
15	M5					Х		
16	>M6					Х		
17	M4					Х		
18	M3					Х		
19	M3					Х		
20	M5	Х					GJ 1210 ×	
21	M5					Х		
22	M8					Х		
23	M5.5				х			
24	M4.5				х			
25	M5				х			
26	M5		x				GJ 802	Х
27	M4				Х			
28	M4.5					Х		Х
29	M5			х				х

Shaklan & Pravdo - 29

- Continued observation at Palomar 200 in.
 - We are in our 8th year, and have the sensitivity to detect Jupiter mass objects in 10-yr orbits around several stars.
- **RV and imaging collaborations**
 - Flux ratios for MLR
 - Velocities for improved orbits
- Astrometric collaborations
 - Overlapping target lists to confirm discoveries, improve orbital fits, help distinguish systematic errors from real motions.
- Investigate new HAWAII-2RG detectors: higher dynamic range possible

- "Astrometric Discovery of GJ802b: In the Brown Dwarf Oasis?" Pravdo, Shaklan, Lloyd, Accepted ApJ (2005).
- "Discovering M-dwarf Companions with STEPS," Pravdo, Shaklan, Lloyd, Benedict, ASP Conf. Series, Astrometry in the Age of the Next Generation of Large Telescopes (Flagstaff, 2005).
- "Astrometric Discovery of GJ164B," Pravdo, Shaklan, Henry, Benedict, ApJ 617, 1323-1329 (2004).
- "Stellar Planet Survey," Pravdo & Shaklan, Scientific Frontiers in Research on Extrasolar Planets, ASP Conference Series, Vol 294, 107-110 (2003).
- "Astrometric Detection of Extrasolar Planets: Results of a Feasibility Study with the Palomar 5 Meter Telescope," Pravdo & ApJ 465, 264-Astrophysical Journal v.465, p.264-277 (1996)
- "High-precision measurement of pixel positions in a charge-coupled device," Shaklan, Pravdo, Sharmon, Appl. Opt. 34, 6672-6681 (1995).