

STEPS: Stellar Planet Survey

E

Stuart Shaklan and Steve PravdoJet Propulsion Laboratory California Institute of Technology

July 29, 2005

Michelson Summer School Caltech

- •**Started December, 1997. Now in 8th year.**
- •**30 nearby M-dwarf stars, V= 12-16.**
- •**Search for > 1 MJ planets and brown dwarfs**
- •**4k x 4k CCD, 2 arcmin field**
- • **Collaborators: Fritz Benedict (spectroscopy), James Lloyd (AO), Shri Kulkarni (AO), Todd Henry (HST)**
- • **STEPS papers referenced on last page of this presentation**
	- –**Discovery of M-dwarf and Brown Dwarf companions to M-dwarf stars.**

Ë

Instrument

- •**4K Loral CCD**
- •**LN2 Dewar**

•

- • **SDSU (Leach) Electronics**
	- –**4 amplifiers**
	- –**Bin pixels 2x2**
	- –**200 kpix read rate**
- \bullet **Binned pixel scale = 78 mas/pix**
- \bullet **Mounts at straight-Cass, f/16 on the Palomar 200 in. telescope.**
	- **Was also used at Keck II in 1998.**
	- **Window is high quality lambda/30 p-v surfaces.**
		- – **Focus term due to vacuum leads to plate scale magnification which is absorbed by the conformal model.**

- • **Targets should not saturate detector too quickly**
	- **V>12**
- • **Need reference stars**
	- **Gal. latitude < 30 deg.**
- • **Need signal > 1 mas with M J planet in 10 yr orbit**
	- **Nearby, low-mass**
- •**Limited telescope time (~ 8 scheduled nights/yr)**
- • **These criteria led to selection of 30 nearby M-dwarfs.**
	- –**Earlier stars are too bright and their signals are too small.**
	- **Reference stars are typically V<19.5**

- • **Large telescopes dramatically increase astrometric efficiency. (Lindegren 1980, Shao and Colavita 1992).**
	- **r.m.s. motion ~** θ**/D2/3,** θ **= field, D = tel. diam.**
- \bullet **We typically achieve 300-500 micro-arcsec s.e.m. of target relative to reference frame in 20 1-minute exposures.**
	- **Systematic error sources:**
		- **DCR: correct 10's of mas**
		- **Dust, window,**
		- **Electronics???**

FIG. 2.—The square root of the Allan variance of the positional uncertainty of 15 stars in NGC 2420 observed with the Palomar 5 m. Top: Declination. Bottom: Right ascension.

Pravdo and Shaklan, 1996 ApJ 465, 264

- • **Typically 20 1-minute exposures per field.**
	- –**Standard error of mean < 1 mas**
- • **Try to stay within 1 hr of meridian.**
	- –**Minimize DCR**
- • **Repoint from run-to-run to within a few arcsec.**
	- **Minimize impact of local CCD and window distortion**
- • **Dither pointing in square pattern, 1 arcsec steps.**
	- **Reduce effect of hot pixels, local gradients….**
- • **No fine guiding, no AO, just simple imaging.**
	- **PSF of all sources across the FOV are nearly identical**
	- • **Typically observe 2 or 3 consecutive nights.**
		- **Helps distinguish systematic vs. stochastic noise**
	- • **Compute nightly statistic: mean position and standard error of the mean relative to reference frame.**

Data Processing Sequence

Stars extractedfrom one night, one field

- • **Step 1: Flatfield image**
	- **Fit quadratic function in each of the 4 quadrants.**
- \bullet **Step 2: Find stars, center in 60 pixel (4.7 arcsec) box**
	- **Center the star in the box using a standard centroid**
	- **(This is not the high precision centroid.)**
- \bullet **Step 3: Remove horizontal artifacts**
	- – **Occasionally we see noise pick-up during readout, appears as aperiodic horizontal offset.**
	- **Step 4: Median filter images**
		- **Use 7-pixel wide median filter line by line in x (Dec) then in y (RA).**
		- **Removes hot-pixels, cosmic rays**

STEPS Cross-Correlation Centroiding

- • *Step 1***: Integrate images in 1 dimension.**
	- – **We will compute x and y centroids in separate steps. We do not do joint (x,y) estimation.**
- • *Step 2***: Compute FFT of 1-D image.**
- • *Step 3***: Estimate slope at origin** $using 1st point (1 cycle per box)$ **of FFT.**
- \bullet *STEP 4***: Compare slope to that of target star.**
	- – **Slope difference yields relative centroid position.**
- • *NOTE 1***: Slope at origin of FFT is mathematically identical to the centroid.**
	- – **Our first frequency value is an approximation to the slope.**
	- *NOTE 2***: Constant background bias gives delta-function at origin, but does not change slope.**

- \bullet **Insensitive to background bias**
	- **Constant background does not need to be estimated and does not affect position measurement.**
- • **Good SNR**
	- –**Most of the energy is in the first spatial frequency.**
	- – **High frequencies can be used and weighted by the FFT amplitude function.**
		- **We currently do not use these points**
- • **No separate matched-filtering function to compute**
	- –**The target star is the image template**
- • **No resampling required**
	- **Image is already sampled well above Nyquist.**
	- **Fast**
		- **1-D 60 point FFT**

 $\boxed{\text{I}}$

•**We generally use a 6-term model:**

> $RA = a * RA + b * Dec + c$ $\text{Dec} = d * \text{RA} + e * \text{Dec} + f$

- \bullet **This requires a minimum of 3 reference stars.**
- \bullet **Allows different magnification in two axes**
- • **Cross term (RA*Dec) is needed for 'keystone' caused by CCD tilt, system misalignment.**
	- \equiv **Expected to be negligible, ~ 150 uas peak at edge of 1 arcminute radius for 200 um of CCD tilt.**
	- **Also should be very stable because CCD is hard-mounted.**
	- • **Performance is only slightly better than simple rotation/translation model.**

Frame-by-Frame Astrometry

July 29, 2005 Shaklan & Pravdo - 17

Motion of Center of Light about Center of Mass: Photocentric Orbit

How to determine companion mass

STEPS determines orbital parameters (P, ecc, incl, epoch, orientation) and photocentric motion α.

A high-resolution image determines the flux ratio (β**). It also determines scale (a) when a companion is visible.**

Case 1: no light from companion (β **= 0)** STEPS constrains $c=f^3*M_{\text{tot}}$ Mass-Luminosity Relationship provides M_1

 M_2 is determined from $M_{\text{tot}} = M_1 + M_2$ and c

Case 2: Image detects a companion STEPS constrains $c=f^3*M_{\text{tot}}$ Image determines scale (a) and flux ratio (β). Mass ratio is determined from $f = \alpha/a + \beta$ M_{tot} is determined from Kepler M = a^3/P^2

GJ 777BResiduals after fitting PM and Parallax

One possible orbit plotted with the data

GJ 164 One possible orbit plotted with data

GJ 802 One possible orbit plotted with data, Keplerian frame

GJ 802 Photocentric Orbit vs. Mass

Ë

The points show the results of \sim 11,000 Monte Carlo trials for the GJ 802 orbit. We plot $(f-\beta)$ vs. M_{tot} for all models falling within the one-sigma confidence limits. Superimposed on the data are the composite MLR curve in the V-band based upon observations (Henry et al. 1999) and the MLR points from the model of Baraffe et al. (2003).

GJ 802b Mass vs. Eccentricity

Table 1. GJ 802 Known Properties

Table 2. STEPS Astrometric Measurements^a of GJ 802

STEPS progress through December, 2004

July 29, 2005 Shaklan & Pravdo - 29

- • **Continued observation at Palomar 200 in.**
	- **We are in our 8th year, and have the sensitivity to detect Jupiter mass objects in 10-yr orbits around several stars.**
- \bullet **RV and imaging collaborations**
	- **Flux ratios for MLR**
	- **Velocities for improved orbits**
- • **Astrometric collaborations**
	- – **Overlapping target lists to confirm discoveries, improve orbital fits, help distinguish systematic errors from real motions.**
- •**Investigate new HAWAII-2RG detectors: higher dynamic range possible**

Ë

- – **"Astrometric Discovery of GJ802b: In the Brown Dwarf Oasis?" Pravdo, Shaklan, Lloyd, Accepted ApJ (2005).**
- **"Discovering M-dwarf Companions with STEPS," Pravdo, Shaklan, Lloyd, Benedict, ASP Conf. Series, Astrometry in the Age of the Next Generation of Large Telescopes (Flagstaff, 2005).**
- – **"Astrometric Discovery of GJ164B," Pravdo, Shaklan, Henry, Benedict, ApJ 617, 1323-1329 (2004).**
- **"Stellar Planet Survey," Pravdo & Shaklan, Scientific Frontiers in Research on Extrasolar Planets, ASP Conference Series, Vol 294, 107- 110 (2003).**
- **"Astrometric Detection of Extrasolar Planets: Results of a Feasibility Study with the Palomar 5 Meter Telescope," Pravdo & ApJ 465, 264- Astrophysical Journal v.465, p.264-277 (1996)**
- **"High-precision measurement of pixel positions in a charge-coupled device," Shaklan, Pravdo, Sharmon, Appl. Opt. 34, 6672-6681 (1995).**