The Future of Astrometric All-Sky Surveys

Norbert Zacharias U.S. Naval Observatory Washington, DC

nz@usno.navy.mil

Michelson Workshop 2005

layout of talk

(1) astrometric surveys
 (2) URAT
 (3) OBSS
 (4) MAPS

astrometric surveys

what is an astrometric telescope?

historical examples

current status all-sky data

best astrometric precision

overview future projects

what is an astrometric telescope?

- design
 - stability; small field distortions
 - image centroid the same for all colors
 - no coma (asymmetric images = trouble)
- hardware features
 - to detect and calibrate systematic errors
 - to enable a "simple model", small error propagations
- examples:
 - reversal of astrograph: East/West of pier
 - grating images to control magnitude equations

history of astrometric sky surveys

- 1890 1930 Astrographic Catalogue -> 13 mag
- 1930 AGK2 (north) -> 12 mag
- 1960 AGK3 (north) -> 12 mag
- 1970 CPC2 (south) -> 11 mag
- various Zone Catalog projects (Yale ...)
- 1960 now: proper motion surveys NPM, SPM
- 1977 2000 : to 14 mag, ~ 40% of sky
 - Hamburg Zone Astrograph (north)
 - USNO Black Birch Astrograph (south)
- 1998 2004 UCAC (first all-sky CCD survey)

currently best optical positions

- Hipparcos Catalogue
 - → 100,000 stars
 - -1 to 12 mag, complete only to V = 7.3
 - mean observing epoch = 1991.25
 - mean position error (1991) = 1 mas
 - mean error proper motions = 1 mas/year
- position errors increase with time

position error = f (time)

Hipparcos Catalogue + new obs.

NOMAD

Naval Observatory Merged Astrometric Dataset = currently best astrometric data = f (mag)

catalogs used Hipparcos UCAC2 Yellow-Sky USNO-B early epoch (PM)
Hipparcos
Tycho2, "all"
NPM, SPM data
Schmidt surveys

supplemented by 2MASS + USNO-B photometry
NOT a compiled catalog: pick 1 by priority

accuracy of catalogs

StarScan plate measuring machine

best astrometric precision

- → assume:
 - only random errors (sqrt-n-law holds)
 - astrograph-type observing (2-dim, overlap. fields)
 - sampling is "sufficient"
 - 'well' conditioned reduction (no loss from error propag.)
 - detector with saturation limit
 - NO magnitude target (no requirement for a specific error at a specific magnitude)

- then lowest astrometric error (mission precision = mp)
 - $mp \sim sml * sqrt(1/n) / d$
 - sml = single meas error linear
 - n = total numb. of observat.
 - d = diameter of focal plane
- independent of:
 - wavelength
 - aperture, field of view
 - focal length, image scale
 - sampling, pixel size

future options

typeprojectcostaccuracymagnituderemarkslaunchname\$US(mas)range

 GB
 URAT
 5 M
 5 - 10
 (2) - 12 - 20 partly funded
 2007

 GB
 NPOI
 10 M
 10 - 20
 0 - 7
 no south
 in service

SB	SIM	900 M	0.004	0 – 20	selected stars	2011
SB	GAIA	600 M	0.015	? - 20	ESA on track	2012
SB	OBSS	750 M	0.010	? - 21+	NASA,USNO	2014
SB	MAPS	30 M	0.500	2 – 13	USNO	2008

U SNO R obotic A strometric T elescope

new ground-based observational project, partly funded

goals of the URAT project

- regular survey: 14 to 20 mag
 - → overlap with UCAC stars (8 to 16 mag)
 - → direct link to faint, extragalactic ref. frame sources
 - optimized for astrometry, absolute positions
- 5 mas positional accuracy
- option for bright stars (if needed)
- all sky: 2 locations (north and south)
- robotic: low operation costs
- multiple overlap in 1 2 years per hemisphere

science justification

- high precision, high accuracy positions:
 - factor of 10 better than before
 - small systematic errors; solar system dynamics
 - inertial frame, strong link radio-optical frames
 - reference stars for LSST, PanSTARRS, ...
- absolute parallaxes (distances) millions stars
- absolute proper motions:
 - improve proper motions by factor of 2
 - galactic kinematics studies
- all sky accurate photometry (1 band)
 - supplement 2MASS and Schmidt surveys

project realization

- 0.85 m aperture, f = 3.6 m telescope
- narrow bandpass (660-750 nm)
- stare mode, active guiding, long + short exposures
- 3-4 degree field of view
- large format detector (6in, 8in wafer)
- transportable, latitude adjustable (or 2 telescopes)
- optimized astrometric performance
- built on UCAC expertise and software

optical design solution

detector type

- LARGE monolithic chip
 - large area/chip has advantage for global astrometry
- CMOS
 - better properties than CCD but need R&D
- CCD SBIR program (2 vendors phase I study)
 - SBIR topic approved 2004
 - phase 1 concluded July 2005
 - → STA selected: 95.4 mm, 10.6k pixel on a side
 - → likely backside (high QE) + camera in phase 2

data & reductions

- about 7 TB compressed pixel data / year / chip
- store on hard disks (RAID arrays) optional copy to tapes, DVDs
- recapitalize on UCAC experience (software pipeline exists already)
- dedicated calibration observations to solve for systematic errors (mas level)
- option for block-adjustment (global solution)
- direct tie to extragalactic reference frame

fundamental limits

- atmosphere:
 - → about 10 mas (1-sigma, large FOV) for 30 ... 100 sec
 - more images (longer project time, more telescopes) can bring this random error down to few mas (maybe 1 mas)
- systematic errors:
 - 0.5 "/pixel, 9 μ m pixel => 1/100 px = 5 mas = 90 nm
 - with effort and 'good astrometric hardware'
 1/200 px realistic = 2 to 3 mas

sites

- southern hemisphere:
 - Cerro Tololo (CTIO)
 - good experience, good infrastructure, available
 - excellent site (2400 hours / year for survey)
- northern hemisphere:
 - → is a problem !
 - ➤ NOFS / Arizona: throughput = 1/2 CTIO
 - Canary Islands ? Hawaii? Baja California (Mexico) ?

schedule

- telescope
 - construction time about 2 years
 - long lead item: optics
 - blanks (6 months), polishing (9 months)
- detector & camera
 - → acquisition about 2 years (CCD)
 - more R & D time for CMOS
- project
 - → observing time 1 2 years per hemisphere
 - sequential with 1 telescope or parallel with 2

conclusions

- multiple sky overlaps: proper motions + parallax
- 0.6 m effective aperture, f= 3.6 m telescope
- astrometry: absolute on ICRS, 5 mas
- 10.6 k by 10.6 k single CCD or 4 of them
- software pipeline already exist (UCAC)
- about 5 million \$US per telescope + detector
- 12 to 20 mag = regular survey
- 7 to 15 mag = extended survey (CCD + narrow filter)
- SBIR program for detector / camera "in good shape"
- need more money for optics / telescope

O rigins B illions S tar S urvey

USNO study for NASA roadmap (May 2005)

OBSS overview

- NASA's Origins roadmap study AO, 2004
- 'big' mission, **\$670M**, similar to Gaia
- single aperture, stare-mode variant selected
- 1.5 m aperture, f= 50 m, 1.2 deg FOV
- launch 2014; flexible observing concept:
 - → with Gaia: OBSS goes to 24th mag in selected areas
 - no Gaia: OBSS can do most of Gaia science
 - higher precision than Gaia, particularly at 20th mag
 - smaller number of visits/field than Gaia

OBSS operation

- general all sky survey (maybe 25% of time):
 - guided long + short exposure (1.5, 15 sec)
 - slew telescope by 0.5 deg + settle = 10 sec
- targeted fields (maybe 75% of time):
 - → as required by science, can integrate long = deep
- absolute positions, motions, parallaxes:
 - utilize block adjustment technique (overl.fields)
 - link to extragalactic sources (galaxies, QSOs)
 --> need to go deep, else won't work !
 - frequent observation of dense calibration fields
- downlink 2-dim pixel data around objects

Mission Concept

15 arcmin Photometric

Field n Time t

1.2 deg Astrometric FOV Field n+1 Time t+36

Field n+2 Time t+73

Simeis 1

advantages over scanning mode

- simple design ---> cost savings
 - single aperture, no compound mirror
 - differential measures, no basic angle stability problem
 - buy larger focal plane instead: gain astrom.precision
- high gain steerable antenna possible
- flexible observing schedule
 - can hit 'interesting' fields more often
 - can be uniform all-sky, no scanning law restrictions
 - → freq. observ. at high parallactic factor possible
- simultaneous high precision 2-dim observations

Optical Design

Optical Structure (1)

Sun Shade

OBSS focal plane

- 10 µm pixel size, 9 Gpx array
- readout in 10 sec
- $V = 8.5 \dots 21 \text{ mag}$ dynamic range (2 expos.)
 - baseline: lateral anti-blooming CCDs
 - → 5k by 5k chips
- sampling = 2 px / FWHM
- 360 CCDs (astrometry) in 1.2 deg circular FOV
- low res. spectrogr: 16-band color data

OBSS mission accuracy

(incl.	assume	d 5 μas F	RSS system.	err.)
spec type	SMP	n - III survey mode	n - 446 targeted mode	V mag
	µas	μas	μas	
M5	100	11	7	15
A0	153	13	8	
M5	246	24	13	18
A0	590	56	56	
M5	1000	95	48	21
A0	2400	230	114	

M illi A rcsecond P athfinder S urvey

USNO micro-satellite proposal

Relevant MAPS Output

Star catalogs: Orders of magnitude improvement in accuracy and density, Viable for decades

Detector demonstration: Demonstrate and characterize performance on-orbit , Pathfinder for CMOS star tracker

Operational demonstration: Pathfinder for OBSS, micro-satellite technology astrometric limits reduction principles

MAPS overview

- ▶ 15 cm, single aperture, 1.1 degree FOV
- step-and-stare mode of observation
- single, large-format detector, overlapping fields of view
- CMOS or CMOS-hybrid chip, 8k by 8k
- ▶ 3 to 14 mag, regular survey
- deeper around extragalactic sources, longer integr.time
- ▶ 1 to 3 year operation
- 1 mas positions
- time from funding to launch: 2 years

MAPS: Primary Objective

Astrometric microsatelite

Mission: measure positions of brightest ~10 million stars to better than 1 mas accuracy

Using ~15—20 year baseline to *Hipparcos*, reduce proper motion errors to < 100 microarcseconds for MAPS-*Hipparcos* stars (110,00 stars)

Resultant star catalogs:

Better than 1 milliarcsecond accuracy 100x density of *Hipparcos* catalog 110,000 bright star positions viable for decades

MAPS Status

 Initial feasibility analysis completed ► Team: **PI: USNO Payload Integration: NRL** ► Optics: SSG Focal Plane: NASA/GSFC Bus: AeroAstro Estimated cost = \$40M \$300k for Phase-A study: promising options

thanks ...

URAT :

Uwe Laux, Tautenburg (optical design) Andrew Rakich, EOS Technologies (optical design)

OBSS / MAPS :

entire teams, in particular Bryan Dorland SSG Tinsley, E2V, JPL

references

http://ad.usno.navy.mil (Astrometry Department) http://www.nofs.navy.mil/nomad.html

Johnston et al. 2005, USNO report to NASA (OBSS roadmap) Dorland et al. 2005, in prep. (OBSS mission design paper) Zacharias 1992, A&A 264, 296 (block adjustment simulations) Zacharias 2004, proc. Potsdam, AN 325, 631 (UCAC, URAT) Zacharias & Dorland 2005, in prep. PASP (stare-mode concept)