Designing an Observing Program

M. J. Creech-Eakman

Outline

- Preliminary Considerations
- Choosing an Instrument
- Choosing Calibrators
- What Affects Data Quality?
- Can You Model the Results?
- Other Considerations
- Tools for Use
- Three Recent Examples
- Conclusions

Preliminary Considerations

- Pose a single, testable hypothesis
- Does an interferometer help you make this measurement?
- Know all necessary background information
- Know whether ancillary data are needed and if already available

Choosing an Instrument

- Primary Considerations:
 - Hemisphere zenith angle limitations
 - Wavelengths acquisition, tracking and science
 - Angular Resolution wavelength/baseline dependent
 - Sensitivity
- Secondary Considerations:
 - Spectral Resolution lines, SNR
 - UV Coverage snapshot, long-term monitoring
 - Amplitudes and/or Phases
- Nota Bene:
 - Special Modes e.g. nulling, phase referencing
 - Availability of Instrument science mission, collaboration

Choosing Calibrators

- No single step is more important!
- Considerations:
 - Proximity to Science Object
 - Stability Variable, Binary, Oblate
 - Colors/Spectral Types Needed for AO? Instrumental response?
 - Spectral Lines Spectral Resolution
 - Resolved or Unresolved
 - Other Considerations Different calibrators for different parts of the science program

Calibration

- Some types of interferometric observables need different levels of fidelity than others
 - Phases closure phase measurements more immune to calibration errors than others
 - Amplitudes what level of V² errors can you suffer and still make a meaningful measurement
 - Spectral Lines how well do they need to be known
 - Nulling how unresolved does your source have to be to avoid leaking through
 - Phase referencing how large is the isoplanatic angle, do the target and calibrator need to be done in the same mode

Conservative Approach to Calibration

- Pick at least 2 unresolved calibrators
- Make sure they are free of any "disturbing" references
- Make sure they are free of spectral lines and approximately the same magnitude as your target
- Pick sources as nearby as possible to the target source – interferometer dependent
- Interleave with target during observations

What Affects Data Quality?

- System Visibility absolute and fluctuations
- Sensitivity are you meeting it?
- Atmospheric Issues what are your requirements on seeing and Strehl
- System Diagnostics what do the black-belt interferometrists look at?
- Be Prepared to Make Changes in Real-Time have a back-up program ready

Modeling the Results

- Pre and Post Observing
 - often required by TACs
 - helps distinguish how to make the observation
 - allows you to determine key times to observe
- What Information Will You Need
 - photometry, spectroscopy, RV, ephemeredes
 - contemporaneous?, periodic?
 - parametric models
- What Resources Will You Need
 - computer time/software
 - theorist, collaborator
 - time on other telescopes

Other Considerations

- Timed programs
 - variable stars, binaries, ToO
- Long-term programs
 - slow or periodic changes in the target
 - deep integrations for sensitivity
- Coordinated programs
 - with other observatories

Tools for use

-

Michelson Science Center											
HOME											
Welcome to gcWeb (v1.0)											
 gcWeb is the Web-based interface for "getCal", the MSC's interferometric observation planning tool suite. The form below is the online version of the "gcGui" interface to getCal. The "Examples" drop-down menu will fill out the form below using "canned" example inputs. Press "Submit" to activate the query. Results will appear in this window. Please be patient. Some queries may take several minutes to run. For more information/help, please read our <u>Help page</u>. For any questions, comments, or bug reports, please contact the <u>MSC Help Desk</u>. 											
Examples											
gcWeb Query											
Press "Submit" to activate the query. Within a few minutes, results will appear in this window.											
Submit Reset Set Defaults											
[?] Object Designation/Pos 💿 name O HD O HIP O Pos (hr:min:sec deg:min:sec)											
[?] 🗹 Calibrator Search											
[?] Luminosity Class: 🛛 LC V 🗌 LC III 🔲 LC I											
[?] Maximum Angular Diameter: 🗌 Max Diam (mas) 1											
[?] Calibrator Search Radius (deg): 10											
[?] Magnitude Range: Min V 3 Max V 10 Min K 5.5 Max K 8.5											

Features

[?] Object Designation/Pos 💿 name O HD O HIP O Pos (hr:min:sec deg:min:sec)
[?] 🗹 Calibrator Search
[?] Luminosity Class: \Box LC V \Box LC III \Box LC I
[?] Maximum Angular Diameter: 🗌 Max Diam (mas) 1
[?] Calibrator Search Radius (deg): 10
[?] Magnitude Range: Min V 3 Max V 10 Min K 5.5 Max K 8.5
[?] 🗌 Simbad Query
Common Names Simbad Meas Browser
[?] 🗹 Timing Info
🗌 Observing Calendar Display 🔲 Timing Display 🗌 u-v-Display
Location: Baseline: Palomar (PTI) ALL Palomar (PTI) Flagstaff (NPOI) Mauna Kea (KI) Mt Wilson (CHARA) Paranal (VLTI) Narrabri (SUSI) leg) Delay Limit (m) Delay Bias (m)

Features con't

	Location: Baseline: Palomar (PTI) ALL NONE PTI_NS PTI_NW PTI_SW
	Zenith Angle Limit (deg) Delay Limit (m) Delay Bias (m)
	Select Date July 27 V 2006 V
	Wavelength (microns) (for u-v Display)
	Include Current Time indicator for u-v and Timing Displays
	[?] 🔲 fbol Diameters
	IR Data 2MASS Constrain Temp Save Photometry fool Plots
	[?] Additional Output Options Cal Script Composition 2MASS IR Phot Parallax Keck sky fmt
M٩	Submit Reset Set Defaults

Some Outputs

Michelson Science Center
HOME © GOALS © PROJECT STATUS © PEOPLE © LIBRARY © LINKS © SITE MAP © JOBS
new query modify current query help
Query Results from gcWeb (v1.0)
Processing Info:
getCal was run with these options on Thu Jul 27 15:35:03 PDT 2006:
getCal -targetHD 3690 -noCal -fbol -strom -geneva -noU -longWL -2Mass -constrainTemp -plots -ps
The original URL of this results page is http://mscweb.ipac.caltech.edu/gcWeb/visitor/temp136957729/output.html.
The results you see will not be stored permanently on our server. Remember to save them onto your local disk. [?] (We may provide a grace period of up to 48 hours during which you may return to this URL to save your results; this grace period is not guaranteed.)
Quick Links:
Text Output: [getCal output] [Fbol Output]

[View all as plain text]

Fbol Plots:

[HD 3690--K0Iab .sed.png]

getCal Output

getCal results:

```
### GUI catalog from getCal-2.6.2 ###
# target HD 3690
# HIP 3138 (HD 3690) has his multiple component flag set to C
  the C designation indicates solutions were found for individual components
#
    2 components:
#
    A component -- V= 5.611
    B component -- V= 8.657 at sep 6.61 arcsec/PA 194 deg
# Simbad Search HD 3690: HD 3690 -- Star in double system KOIab: V=5.438
HDC3690 00 39 55.572 +21 26 18.582 0.031 -0.029 5.4 3.5 1.16 F3V... 0.0 xxx
                                                                                XXX
                                                                                     trq
### Bolometric Flux Diameter Fit results ###
# option fixedError
# option ps
# option constrainTemp
# option stdin
# 4 command line arguments processed
# Read 21 data lines from file stdin
                                   ChiSgr
                                                 F bol (10^-8
                                                                    Ang
#
                                          DOF erg/cm2/s)
    Star
                      Teff(K)
                                   /DOF
                                                                 Size (mas)
                                                                               Filters
 1 HD 3690--K0Iab: 4420 +/- 0
                                   12.74
                                           7 22.98 +/- 3.12 1.34 +/- 0.94 XXXX...X
### Simbad query results ###
# Simbad Search HD 3690: HD 3690 -- Star in double system KOIab: V=5.438
   [1] Jump to the CDS home page
```

Fbol output (i)

Fbol output (ii)

Wavelength (um)

Example Number 1

- Triple System Hummel et al., 2003, AJ
 - Hypothesis: Angular momentum axes of the smaller and larger orbits are aligned
 - Instrumental choice: Long-term coverage on a system with RV data where we'd like to get closure phases → NPOI

When can I observe?

Calibrators?

35 deg zerith angle constraint

-40 to 40 m delay interval

Produced by firring GUI v0.94dev (getCal=2.6.2)

Michelson Science Center -- http://mso.caltech.edu/

Which calibrators were used? HD 102870 (F9V) & HD 118098 (A3V)

getCal results:

GUI catalog from getCal-2.6.2
target HD 102870
Simbad Search HD 102870: HD 102870 -- High proper-motion Star F9V V=3.61
HDC102870 11 50 41.719 +01 45 52.985 0.741 -0.271 3.6 2.3 0.52 F8V 0.0 xxx xxx trg

Observing calendar (obsCalendar v0.11dev) run at 7/28/2006 UTC, day 2006209
for timings in 2007 UTC
Using Flagstaff Location (long: -111:36:06 lat: +35:11:36)
HDC102870 11 50 41.719 +01 45 52.985 is near transit at sunrise on 12/19/2007 (2007353) target
HDC102870 is near transit at midnight on 3/12/2007 (2007071)
HDC102870 is near transit at sunset on 5/20/2007 (2007140)

Is the calibrator okay?

	I/196/annex1 Hipparcos Input Catalogue, Version 2 (Turon+ 1993) (ReadMe) Double and Multiple System Components																		
	Full_r_RAJ2000_DEJ2000CCDMCompHICRAJ2000DEJ2000MagPASepDMADS																		
	arcm	in	<u>"h:m:s"</u>	<u>"d:m:s"</u>					<u>"h:m</u>	us"	<u>"d:n</u>	<u>n:s"</u>	mag	deg a	rcsec				
[<u>1</u> 0.001	15	11 50 41.72	+01 45 52.	9 1150	07+0146	5 A	57757	11 50 4	41.72 +	-01 4	5 52.9	3.8			BD +02	2489		
	I/197A/tic Tycho Input Catalogue, Revised version (Egret+ 1992) (ReadMe) The catalogue, zones 0/37.5deg																		
	Full _r		_RAJ2000	_DEJ2000	TIC	ID1 TI	CID2	RAJ20	00	DEJ20	00	<u>ePos</u>	<u>e</u>	Bmag	<u>e</u>	Vmag H	lagl		
	arcm	in	"h:m:s"	"d:m:s"				"h:m:s	"	"d:m:s		10mas	mag	mag	mag	mag			
[<u>/</u> 0.138	82	11 50 41.19	+01 45 55.4	4	273	924	11 50 41	189 +(01 45 5	5.40	10	0.01	4.20	0.01	3.60	1		
	I/198/catalog Tokyo Photoelectric Meridian Circle Catalog 1989 (Yoshizawa+ 1993) (ReadMe) The catalog (Parts I & II) The catalog (Parts I & II)																		
	<u>Full</u> _r		_RAJ2000	_DEJ2000	N	Cat of	herN o	otherMa	g <u>Sp</u> E	Cp-1900	<u>Not</u>	os <u>R</u> A	J200	0	DEJ2	2000			
ļ	arcm	in	<u>"h:m:s"</u>	<u>"d:m:s"</u>				mag		<u>a</u>			<u>h:m:s"</u>		<u>"d:n</u>	<u>n:s"</u>			
l	<u>1</u> 0.139	93	11 50 41.19	+01.45.55.	8 285	FK5	445	3.7	0 F8	89.34	1	8 11 5	0 41.1	1 9 4 ±	01 45	55.81			
	I/237/catalog The Washington Visual Double Star Catalog, 1996.0 (Worley+, 1996) (ReadMe) WDS Catalog																		
/	<u>Full</u> _r		RAJ2000	_DEJ2000	RA200	0 DE2	000 Di	<u>scName</u>	Comp	Datel	<u>pal</u>	Sep1	Mag	A M:	agB	<u>DM</u>	<u>note</u>		
ļ	arcmi	in	<u>"h:m:s"</u>	<u>"d:m:s"</u>	<u>"h:m:s"</u>	<u>"d:m</u>	<u>:s"</u>			<u>a</u>	deg	arcsec	mag	; <u>m</u>	ag				
	<u> </u>	1	11 50.7	+01 46	11 50.	.7 +01	46 <u>ST</u>	<u>T</u>	AB	850	283	200.6	3.6	51 10).60 -	+02 2489	<u>pN</u>		
	<u> </u>	1	11 50.7	+01 46	11 50.	7 +01	46 <u>ST</u>	<u>T</u>	AC	852	86	539.1	3.6	51 8	8.80 -	+02 2490			
	I/237/notes The Washington Visual Double Star Catalog, 1996.0 (Worley+, 1996) (ReadMe) Notes to the WDS																		
	T 11		D A 12000	DE 12000	D 4 200	DES	000 D:	- NI-	Cont			T							

UV Coverage

RV? - Yes!

1983 HARTKOPF ET AL.: TRIPLE SYSTEM OF η VIRGINIS

TABLE 7. Radial velocity observations of η Vir Ab.

HJD 2400000+	V _{ste} (km s ^{−1})	(0-C)	PHASE _L	V_L (km s ^{−1})	PHASEs	Vs (kms ^{−1})	Reference Star	Source Code
17710.630	39.3	0.9	0.699	3.6	0.898	35.7		
17714.750	58.4	11.4	0.700	8.9	0.955	49.5		
17716.630	59.6	12.3	0.700	9.3	0.981	50.3		
18077.620	50.6	4.0	0.775	7.4	0.010	43.2		
18103.610	-24.0	-3.3	0.781	3.9	0.372	-27.9		
18355.790	48.1	8.6	0.833	11.5	0.884	38.6		
18757.910	-30.4	-14.1	0.917	2.3	0.400	-32.7		
18759.790	-29.2	-14.0	0.918	2.4	0.512	-31.6		
18764.700	-16.1	-5.4	0.919	6.7	0.580	-22.8		
43670.605	-16.4	0.3	0.116	8.6	0.498	-25.0		мрь
43571.648	15.4	0.7	0.116	8.8	0.513	-24.2		мрь
44040,616	-11.5	-4.9	0.193	3.7	0.652	-15.2	β Vir	MRr
44178.023	-13.3	2.7	0.222	6.6	0.566	-19.9	β Vir	MRb
44356.834	33.5	-0.7	0.259	3.7	0.057	29.8	a Lyr	MRb
44357.699	29.7	-0.9	0.260	3.6	0.069	26.1	β Vir	MRb
44738.743	-25.8	-1.5	0.339	1.3	0.376	-27.1	# Leo	MRb
44739.741	-24.5	0.1	0.339	2.1	0.390	-26.6	0 Leo	MRb
45074.843	32.4	1.8	0.409	1.7	0.058	30.7		КРЬ
45075.799	28.9	2.3	0.409	2.0	0.071	26.9	8 Leo	KFr
45723.009	21.8	0.3	0.545	0.6	0.086	21.2		КРЬ
45784,822	43.2	-0.6	0.557	0.3	0.947	42.9	µ Ori	KT1b
45814.672	-26.3	-1.0	0.564	0.1	0.363	-26.4	0 Leo	KT1r
45855.715	43.6	1.1	0.572	1.3	0.935	42.3	0 Leo	KT1r
48534,709	-24.2	-1.1	0.714	3.0	0.393	-27.2	Ø Leo	KT1r
46583.740	27.6	-0.6	0.724	3.5	0.076	24.1	σ Boo	KT1r
46586.716	16.1	0.7	0.725	4.2	0.117	11.9	σ Βοο	KT1r
46866,883	44.3	-0.7	0.783	5.3	0.020	39.1	σ Βοο	KT1r
40807.790	40.2	-2.1	0.783	4.6	0.032	35.6	ø Bee	KT1r
46858.780	39.0	0.2	0.784	5.8	0.046	33.3	σ Βοο	KT1r
46970.723	-17.3	2.6	0.805	7.6	0.466	-24.9	σ Boo	KT1r
46971.697	-18.3	1.2	0.805	6.9	0.480	25.2	σ Βοο	KT1r
46972.719	-22.1	-3.1	0.805	4.8	0.494	-26.9	σ Βοο	KT1r
46974.691	-18.5	-0.8	0.806	6.0	0.521	-24.5	σ Βοο	KTlr
47151.035	51.7	-0.0	0.843	7.5	0.978	44.2	βVir	KT2r
47152.040	51.4	0.5	0.843	7.7	0.992	43.7	βVir	KT3r
47153.077	48.8	-0.4	0.843	7.3	0.006	41.5	β Vir	KT3r
47244.857	-12.8	0.1	0.862	8.1	0.284	-20.9	σ Βοο	KT3r
47245,752	-13.7	0.4	0.862	8.2	0.297	-21.9	σ Βοο	KT3r
47246,903	-13.9	1.4	0.863	8.7	0.313	-22.6	σ Βοο	KT3b
47247.897	-15.2	1.0	0.863	8.6	0.327	-23.8	σ Boo	KT3r
47248.900	-18.0	-1.1	0.863	7.5	0.341	-25.5	σ Βοο	KT3r
47312.819	-8.7	-2.7	0.876	7.1	0.231	-15.8	σ Βοο	KT3r
47313.781	-5.9	2.0	0.877	9.4	0.245	-15.3	σ Βοο	KT3r
47555.984	-5.9	1.1	0.927	10.1	0.618	16.0	σ Boo	KT3r
47556.987	-4.2	1.3	0.927	10.2	0.632	-14.4	a Boo	KT3r
47623.768	-11.7	-0.0	0.941	9.8	0.562	-21.5	σ Βοο	KT3r

FIG. 7. Computed radial velocities (V_L) and calculated curve for the long-period orbit from the velocities of Aa; plusses = Harper's velocities, dots = our velocities.

1984). Here, the spectral type of Aa is not used because absolute magnitudes for subgiants are more uncertain than for main-sequence stars. The photometric parallax can be determined and its result is $\pi = 0.0016$. Surprisingly, the

1983

Data from Paper

Published Results

Next Steps?

- Did we answer our question?
 - derived distance, masses, relative magnitudes, orbital inclination
 - have 30.8° between orbits and orbits are corotating
- Is there a way to improve this experiment?
 Do more systems.....only 22 triples have measured orbits!

Example Number 2

- Rapidly Rotating Stars Peterson et al, 2006, ApJ
 - Hypothesis: Rotation causes the stars to be oblate – pick Altair to test.
 - Instrumental choice: Need high angular resolution due to the differential nature of the measurement of oblateness. Probably want closure phases → NPOI.

When can I observe?

MSW - July 28, 2006

Designing an Observing Program

UV Coverage

Data from Paper

Next Steps?

- Did we answer our question?
 - Yes rapid rotators can appear to be oblate (viewing angle)
 - See predicted von Zeipel gravity darkening
- Is there a way to improve this experiment?
 - More spectral resolution?
 - More sensitive instrument in order to get larger sample?

Example Number 3

- Dust Species around mass-losing variable star – Mennesson et al. 2005, ApJ.
 - Hypothesis: Can we locate the dust formation location around a mass-losing star?
 - Instrumental choice: Dust is more readily observed at N band (and with spectral resolution we can learn something about the dust species) → Keck Interferometer KALI camera in non-nulling mode

When can I observe?

Calibration

Ancillary Data

Results

- V² as function of wavelength (left)
- UD fits to spectral channels (below)

MSW - July 28, 2006

Derived from spectrum from a single Keck and using best model parameters: star UD = 3.78 mas @ 3100K & shell UD = 27.6 mas @ 1160K – a Mg-rich silicate dust

Next Steps?

- Did we answer our question?
 - Yes we detected the dust at a larger stellar radius than the photosphere and were able to understand a few things about the species.
- Is there a way to improve this experiment?
 - Plan ahead and have ancillary data that is contemporaneous – IR spectrum and light curve
 - Do with nulling "turned on".

Final Steps in the Process...

- Reduce the data early and often
 - check quality, check tools, trace instrument behavior
- Model and perform fits
 - preliminary models, find out if need more info
- Include Error Estimates
 - systematics and observing uncertainties
- Don't Hesitate to Ask for Assistance
 - support scientists, colleagues, theorists,...
- PUBLISH!! and then follow-up

Conclusions

- Good design of an observing program takes careful preparation. Think ahead.
- Data is only as good as its calibration.
- Try to be open to serendipity there may be more in your data than you expect.
- Enjoy you've got the best job in the world!