

#### Polarization with Interferometry

Michael Ireland

Michelson Summer Workshop, July 27, 2006



- The basics: how does the picture of interference change when the E field is a vector quantity.
- What kind of observables result from combining polarimetry with long-baseline interferometry?
- How can we turn a "normal interferometer" into one capable of polarimetric observations? (+examples)
- How well should OIP calibrate?
- What science areas can most benefit from OIP?

## Recap: E-field as a scalar

FORNIA

 Fringes are formed by splitting the electric field in two, phase-shifting one component and interferring:

$$E_{d} = E_{A} + E_{B} \exp(i\delta)$$
  
$$I_{d} = \left\langle E_{d} E_{d}^{*} \right\rangle = \left| E_{A} \right|^{2} + \left| E_{B} \right|^{2} + 2\left| E_{A} \right| \left| E_{B} \right| \cos(\delta)$$

This enables a 'visibility' to be defined as a ratio:

$$V = \frac{I_{\max} - I_{\min}}{I_{\max} + I_{\min}}$$

#### Interference with Vectors

- All photons are polarized. Unpolarized light consists of a statistical distribution of photons in definite polarization states (incoherent sum, mixed quantum state...).
- The polarization state of light is a complex vector:

FORNIA

$$\mathbf{E} = \begin{bmatrix} E_x \\ E_y \end{bmatrix} \exp(i[\mathbf{k}.\mathbf{x} - \omega t]) = \begin{bmatrix} E_R \\ E_L \end{bmatrix} \exp(i[\mathbf{k}.\mathbf{x} - \omega t])$$

• The electric field can be split into 2 or more parts, and recombined. This is vector addition: interference!

$$\begin{bmatrix} E_x \\ E_y \end{bmatrix} \exp(i[\mathbf{k}.\mathbf{x} - \omega t]) + \begin{bmatrix} E'_x \\ E'_y \end{bmatrix} \exp(i[\mathbf{k}.\mathbf{x} - \omega t + \phi]) = \begin{bmatrix} E_x + e^{i\phi}E'_x \\ E_y + e^{i\phi}E'_y \end{bmatrix} \exp(i[\mathbf{k}.\mathbf{x} - \omega t])$$



 Optics operate on the electric field vector one at a time by matrix multiplication:

$$\mathbf{E}' = \mathbf{J}_1 \mathbf{J}_2 \dots \mathbf{J}_n \mathbf{E}$$

 Example Matrices: Polarizer
  $\begin{bmatrix}
 1 & 0 \\
 0 & 0
 \end{bmatrix}$  Retarder (Mirror)
  $\begin{bmatrix}
 1 & 0 \\
 0 & exp(-i\phi)
 \end{bmatrix}$  Image Rotator
  $\begin{bmatrix}
 cos(\theta) & -sin(\theta) \\
 sin(\theta) & cos(\theta)
 \end{bmatrix}$ 



#### Jones Matrices: Example.



#### Jones Matrices: Example.

• The intensities as a function of delay  $\delta$  are:

FORNIAL

HNOLOG

$$I_{1,x} = |E_x|^2 (1 + \cos(\delta))$$
  

$$I_{1,y} = |E_y|^2 (1 + \cos(\delta - \phi_1 + \phi_2))$$
  

$$I_{2,x} = |E_x|^2 (1 - \cos(\delta))$$
  

$$I_{2,y} = |E_y|^2 (1 - \cos(\delta - \phi_1 + \phi_2))$$

• For polarizers at 45 degrees to x and y:

$$I_{1,x+y} = I_{1,x-y} = \frac{1}{2} \left( \left| E_x \right|^2 + \left| E_y \right|^2 \right) \left( 1 + \cos\left(\frac{\phi_1 - \phi_2}{2}\right) \cos\left(\delta - \left(\frac{\phi_1 - \phi_2}{2}\right)\right) \right)$$
  
$$I_{1,x+y} = I_{1,x-y} = \frac{1}{2} \left( \left| E_x \right|^2 + \left| E_y \right|^2 \right) \left( 1 - \cos\left(\frac{\phi_1 - \phi_2}{2}\right) \cos\left(\delta - \left(\frac{\phi_1 - \phi_2}{2}\right)\right) \right)$$
  
$$\Rightarrow \text{Visibility amplitude reduction}$$



#### Mueller Matrices and Stokes Parameters

- In optical interferometry, we measure the response to partially-polarized sources, and measure intensity not electric fields.
- From the intensities in different polarization states, we get the Stokes parameters:

$$I = I_{x} + I_{y} = \left\langle \left| E_{x} \right|^{2} \right\rangle + \left\langle \left| E_{y} \right|^{2} \right\rangle$$

$$Q = I_{x} - I_{y} = \left\langle \left| E_{x} \right|^{2} \right\rangle - \left\langle \left| E_{y} \right|^{2} \right\rangle$$

$$U = I_{45} - I_{-45} = \left\langle E_{x} E_{y}^{*} + E_{x}^{*} E_{y} \right\rangle$$

$$= \left\langle 2E_{x} E_{y} \cos(\delta) \right\rangle, \text{with } \delta \text{ the } y - x \text{ phase shift.}$$

$$V = I_{L} - I_{R} = i \left\langle E_{x} E_{y}^{*} - E_{x}^{*} E_{y} \right\rangle = \left\langle 2E_{x} E_{y} \sin(\delta) \right\rangle$$



#### Mueller Matrices and Stokes Parameters

- A Mueller Matrix M transforms a stokes vector [I,Q,U,V] into a vector [I',Q',U',V']
- Any Jones matrix can be written as a Mueller Matrix, but Mueller matrices also allow depolarization of the electric field.
- We can also form visibility Mueller matrices: e.g. calculation of  $\mathbf{M}_{11}$  for a "fringe signal" (visibility numerator  $E_A E_B^*$ ):

$$\mathbf{M}_{11} = [0,1,0,0]\mathbf{M} \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}$$
$$= \frac{1}{4} ([1,1,0,0]\mathbf{M} \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix} + [1,-1,0,0]\mathbf{M} \begin{bmatrix} 1\\-1\\0\\0 \end{bmatrix} - [1,1,0,0]\mathbf{M} \begin{bmatrix} 1\\-1\\0\\0 \end{bmatrix} - [1,-1,0,0]\mathbf{M} \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix} )$$
$$= \frac{1}{4} ([1,0]_{Ins} \mathbf{J}_{A} \begin{bmatrix} 1\\0\\]_{Sky}} \cdot ([1,0]_{Ins} \mathbf{J}_{B} \begin{bmatrix} 1\\0\\]_{Sky} \end{pmatrix}^{*} + \dots)$$



- Fringes are formed by adding (complex) electric fields and squaring.
- But, the E field is best represented as a vector. Fringes are formed by vector addition, and squaring the components.
- The action of optics on the E field is represented by multiplication by 2x2 complex Jones matrices.
- To consider intensities, we have to move from electric field vectors to Stokes parameters. These are intensity differences and sums of pure polarization states.
- The action of optics on Stokes parameters is represented by multiplication by 4x4 Mueller matrices. These are real for incoherent intensities, and complex for fringe signals.

# Visibilities in Stokes Parameters

- Visibilities are always a ratio. The numerator (fringe signal) and denominator (incoherent flux) can both be expressed in terms of Mueller Matrices.
- Define the Stokes intensity vector <u>/</u> and the Stokes fringe vector <u>F</u>. Then a polarizaton state <u>P</u> (e.g. x:[1,1,0,0]) has one of 2 obvious visibility definitions. Only one of these has a non-zero denominator in general.

$$V_{P} = \frac{\underline{P}\mathbf{M}_{F}\underline{F}}{\underline{P}\mathbf{M}_{I}\underline{I}} \text{ or } \frac{\underline{P}\mathbf{M}_{F}\underline{F}}{I_{0}} ??$$

NB Elias (2004) (25 page, 83 Eqn paper) uses the second, and calls  $\underline{I}$ :  $I_0$  and  $\underline{F}$ :  $I_{12}$ )

## ANNA TITUTE OF THE CHNOLOGI

#### Astronomy with OIP





### **Circumstellar Scattering**

#### Unpolarized light

#### Polarized light





### **OIP Visibility Curves**

 In the case of spherical symmetry, we can predict visibility curves for linear polarization parallel and perpendicular to the baseline

INSTITUTION INSTITUTION

UTEO

HNOLO

 Obvious examples: winds from Hot stars, scattering around Mira variables...



P Cyg Prediction (Chesneau 2003)



Solid lines: Thin shell model, Dashed lines: Outflow model



Ireland et al (2005)



- R1, R4 : half-wave plates. R3 : LCVR. R2: QWP. W1, W2 : YVO<sub>4</sub> Wollastons.
- Enables Measurement of arbitrary polarization states.





 Complex visibility ratios are *un-affected by the atmosphere* or instrumental polarizations.

 $\mathbf{M}_{F}(\text{seeing} + \text{optics}) = f(\text{seeing})\mathbf{M}_{F}(\text{optics})$ 

Simple strategy: define back-end observables, and fit on-sky models for intensity and fringe signal directly to these observables. E.g. for a measurement of  $V'_x/V'_y$ 

$$\frac{V_{x}}{V_{y}} = \frac{F_{x}I_{y}}{I_{x}F_{y}} = \frac{[1,1,0,0]\mathbf{M}_{F}F \cdot [1,-1,0,0]\mathbf{M}_{I}I}{[1,1,0,0]\mathbf{M}_{I}\vec{I} \cdot [1,-1,0,0]\mathbf{M}_{F}\vec{F}}$$

### Calibration Strategy 2: 'Intuitive' Stokes Observables

Assume that the polarimetric signal is small, i.e.

$$\frac{V_Q}{V_I} << 1, \frac{V_U}{V_I} << 1, \frac{V_V}{V_I} << 1$$

...and that as a good approximation  $\underline{I} = [I_0, 0, 0, 0]$ 

Then:

$$\frac{V_{Q}}{V_{I}'} = \frac{1}{2} (1 - \frac{V_{y}}{V_{x}'})$$
$$\frac{V_{Q}'V_{I,C}'}{V_{I}'V_{Q,C}'} = [a, b, c, d] \frac{\underline{F}}{I_{0}F_{0}}$$

...where [a,b,c,d] is calculated from the system fringe Mueller matrix  $\mathbf{M}_{F}$  (work out yourself or ask me later).







#### S Lac "Q" parallel-perpendicular

- When visibility ratios are converted to onsky V<sub>Q</sub> values.
- A signal of 0.003 with an error of 0.001!





 A detection of polarized light from a CEGP will give a clear determination of grain size in the dust clouds.



## Summary

- The E-field is a vector, which can be manipulated by multiplication by Jones matrices and vector addition.
- The interferometer response to intensity is best characterized using Mueller matrices.
- OIP is ideal for the science of circumstellar scattering.
- OIP is a differential technique, that cancels-out atmospheric effects (high precision).
- There are several ways that data can be calibrated: the final observables are functions of Stokes visibilities and not the visibilities themselves