Stellar diameters, rotation and pulsation

2006 Michelson Summer Workshop

Frontiers of interferometry: stars, disks, and terrestrial planets

Caltech, Pasadena July 25, 2006

Guy Perrin

Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique

Outline

- Measuring stellar diameters
- Why measuring stellar diameters ?
- Pulsations
- Rotation

Outline

Measuring stellar diameters

Why measuring stellar diameters ?

Pulsations

Rotation

2006 MSW

G. Perrin -- Diameters, rotation, pulsation

The uniform disk visibility function

Brightness distribution: $I(\vec{S}) = \Pi\left(\frac{S}{\emptyset}\right)$ with \emptyset the angular diameter and S the spatial coordinates

Visibility function:

$$V(\vec{B}) = \frac{2J_1\left(\frac{\pi \partial B}{\lambda}\right)}{\frac{\pi \partial B}{\lambda}}$$

Modulus of the visibility function:

G. Perrin -- Diameters, rotation, pulsation

The Michelson interferometer at Mount Wilson (1921)

2006 MSW

G. Perrin -- Diameters, rotation, pulsation

Examples of modern diameter measurements

2006 MSW

G. Perrin -- Diameters, rotation, pulsation

Examples of modern diameter measurements

Perrin et al. (2003, IOTA)

2006 MSW

G. Perrin -- Diameters, rotation, pulsation

How to efficiently constrain stellar diameters

Let's use the product $\emptyset x B/\lambda$ (a *normalized* diameter) instead of \emptyset .

2006 MSW

G. Perrin -- Diameters, rotation, pulsation

How to efficiently constrain stellar diameters

In practice, measurements close to the first null of the visibility function provide an excellent constraint

Why?

1. Multiplicative errors and biases (those produced by turbulence for example) are larger at higher visibilities

➔ Multiplicative errors and biases close to the first null therefore tend towards 0.

2. Multiple measurements around the first null are efficient to explore the star (e.g. limb-darkening, wait a little bit)

Diameter measurement and visibility noise

Arcturus data taken at IOTA with IONIC

Lacour et al. (\geq 2006, IOTA)

2006 MSW

G. Perrin -- Diameters, rotation, pulsation

Accuracy of diameter measurements

Demonstrated accuracy $\sim 0.5\%$ in K

e.g. Kervella et al. (2003) with a 60 m baseline on α Cen A (\emptyset_{LD} =8.5 mas) and α Cen B (\emptyset_{LD} =6.0 mas) at VLTI

What sets the limit is probably the ability of the UD model or of other simple models to well describe the star.

Extrapolated to a 330 m baseline and in the J band this means that CHARA should be able to measure all stellar diameters larger than 0.6 mas with an accuracy better than 0.5%

This is a few thousand stars !

Measurement of the α Cen components

2006 MSW

G. Perrin -- Diameters, rotation, pulsation

Limb darkening

A limit to the accuracy of the measurement The uniform disk model provides the *apparent* size of an object Limb darkening makes a star appear smaller than it is in reality.

Uniform disk

Limb darkening of the solar photosphere in the visible Limb darkened disk

The apparent star diameter is smaller by a few percents See J. Aufdenberg talk

Limb darkening needs to be modeled or directly measured

2006 MSW

G. Perrin -- Diameters, rotation, pulsation

Limb-darkening, apparent diameter, visibility

G. Perrin -- Diameters, rotation, pulsation

Outline

Measuring stellar diameters

Why measuring stellar diameters ?

Pulsations

Rotation

2006 MSW

G. Perrin -- Diameters, rotation, pulsation

What are diameters useful for ?

- Diameters are useful to constrain fundamental parameters: mass, radius, T_{eff} , ...
- Comparison of (R, T_{eff}) with evolutionary models
- Differences between T_{eff} and T_c are illustrative of the complex atmospheric structure of a star (diverges above M0 III (Ridgway et al. 1980))
- Temperatures and diameters are useful to generate synthetic models of galaxies
- Temperatures and diameters are useful to generate models of parent stars of pulsating giants
- Prediction of diameters from models at $\sim 1\%$ precision

The fundamental parameters of α Cen B

Fig. 10. HR diagram of α Cen B. The line on the right corresponds to a mixing length of $\lambda = 0.96$ and a mass of 0.909 M_{\odot} , the line on the left corresponds to the values published in Thévenin et al. 2002 ($\lambda = 0.98$, 0.907 M_{\odot}).

Kervella et al. (2003)

 α Cen B diameter larger than the prediction \Im reduce the mixing length \Im increase the mass \Im agreement with asteroseismic estimate

2006 MSW

G. Perrin -- Diameters, rotation, pulsation

Measurement of Limb darkening

2006 MSW

G. Perrin -- Diameters, rotation, pulsation

Measurement of Limb darkening

The effective temperature scale of giants

2006 MSW

G. Perrin -- Diameters, rotation, pulsation

Diameters inside and outside TiO bands of latetype stars

Quirrenbach et al. (1993, Mark III)

2006 MSW

G. Perrin -- Diameters, rotation, pulsation

Life story

Evolved stars

G. Perrin -- Diameters, rotation, pulsation

The atmosphere of Mira stars

2006 MSW

G. Perrin -- Diameters, rotation, pulsation

2006 MSW

G. Perrin -- Diameters, rotation, pulsation

2006 MSW

2006 MSW

G. Perrin -- Diameters, rotation, pulsation

Multi- λ observations of R Leo

A possible sketch for Mira stars

Inner edge of the dust envelope

Radius and pulsation mode

2006 MSW

G. Perrin -- Diameters, rotation, pulsation

Outline

Measuring stellar diameters

Why measuring stellar diameters ?

Pulsations

Rotation

Meausuring the pulsation of stars

- A difficult task
- *Either* stars are well approximated by uniform or slightly darkened disks but have small amplitude pulsations
- Or stars have large amplitude pulsations but have complex structures that (may) evolve with time

Almost no variations at 1290 nm

2006 MSW

G. Perrin -- Diameters, rotation, pulsation

Thompson et al. (2002, PTI)

2006 MSW

G. Perrin -- Diameters, rotation, pulsation

Perrin et al. (1999, IOTA)

R Leo 4 baseline 1997 measurement

Astron. Astrophys. 345, 221-232 (1999)

Interferometric observations of R Leonis in the K band*

First direct detection of the photospheric pulsation and study of the atmospheric intensity distribution

G. Perrin¹, V. Coudé du Foresto¹, S.T. Ridgway², B. Mennesson¹, C. Ruilier¹, J.-M. Mariotti¹, W.A. Traub³, and M.G. Lacasse³

¹ Observatoire de Paris, DESPA, F-92195 Meudon, France

² National Optical Astronomy Observatories, Tucson, AZ 85726-6732, USA

³ Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA

(Perrin et al. 1999)

Direct detection of pulsation?

2006 MSW

G. Perrin -- Diameters, rotation, pulsation

Simple ad-hoc model: photosphere + molecular layer

2006 MSW

G. Perrin -- Diameters, rotation, pulsation

Apparent diameter variations of Mira

Apparent diameter variations of Mira

Apparent diameter variations of Mira

... the apparent diameter change may be a pure optical depth variation effect

2006 MSW

G. Perrin -- Diameters, rotation, pulsation

The Cepheid stars and the distance scale

2006 MSW

G. Perrin -- Diameters, rotation, pulsation

Unsuccessful attempts

2006 MSW

G. Perrin -- Diameters, rotation, pulsation

The Cepheid law calibration

2006 MSW

Outline

Measuring stellar diameters

Why measuring stellar diameters ?

Pulsations

Rotation

2006 MSW

G. Perrin -- Diameters, rotation, pulsation

How to measure rotation?

It should be easy:

make an image of the star and watch the motion of spots with rotation

Maybe a little too difficult for now.

Another idea:

measure a quantity which is a consequence of rotation

2006 MSW

G. Perrin -- Diameters, rotation, pulsation

Flattening ... in a simplified way

- A particle at the equator of the star is subject to its weight *P*, the pressure reaction *R* and the centrifugal force *C* created by rotation
- For a given central mass, the flattening is then simply given by (Huyghens approximation):

$$\frac{R_{eq}}{R_{pol}} = 1 + \frac{C}{2P}$$

For the matter to stay on the star, we have C < P, and therefore $R_{ed}/R_{pol} < 1.5$

Altair

Achernar

Obviously, Achernar is not a uniform disk !

2006 MSW

G. Perrin -- Diameters, rotation, pulsation

Modeling

The incredible case of Vega (K band)

Subsolar point

2006 MSW

G. Perrin -- Diameters, rotation, pulsation

Closure phase imaging of Vega (500 nm)

The asymmetry predicted by CHARA/FLUOR is detected with NPOI

93% of the breakup speed !

2006 MSW

i=4.6°

G. Perrin -- Diameters, rotation, pulsation

Fast rotating stars observed by interferometry

Regulus (CHARA)

Vega (CHARA, NPOI)

A brief conclusion

- Meausuring stellar diameters is a classical sport for interferometrists (the Australian intensity interferometer could have been mentioned here)
- Diameters can be measured with very high accuracies ($\sim 0.5\%$)
- Measuring diameters is useful for both stellar and extragalactic physics
- Measuring diameter spatial and temporal variations is useful for cosmology (distance scale) and also for fundamental physics (e.g. the Von Zeippel effect)
- Care should be taken when measuring diameters of non-ordinary stars

Thanks to P. Kervella for the stellar rotation slide fund

2006 MSW

G. Perrin -- Diameters, rotation, pulsation