Science with Closure Phases

Peter Tuthill Sydney University

Closure Phase The Newest Toy in the Store ...

The first golden age of Interferometry:

Albert Michelson

- Moons of Jupiter
- Binary Stars
- Red Giant Stars
 - Angular Diameters
 - Betelgeuse + others

Amplitudes and Phases

Baby Steps – Aperture Masking

Baldwin et al. Nature 1986, 320, 595: First Optical Closure Phase Haniff et al Nature 1987, 328 694: First CLP Image

FIG. 7. Reconstructed image of σ Her. Contour levels are -2%, -1%, 1%, 2%, 3%, 5%, 10%, 20%, 30%, 40%, 50%, and 60% of the maximum. The top is to the north and to the left is the east.

FIG. 4. Reconstructed image of β CrB. Contour levels are -2%, -1%, 1%, 2%, 3%, 5%, 10%, 20%, 30%, 40%, 50%, and 60% of the maximum. The top is to the north and the left to the east.

Capella, First long-baseline optical image (COAST/Cambridge)

Sep 13 1995

Sep 28 1995

Take a bow, COAST interferometer

Bright Binaries: Interferometer Baby Food

Mizar NPOI images May/June 1996

Capella IOTA images November 2002

Benson et al 1997 AJ 114 122

 λ Vir+WR 140 - Monnier et al. 2004 Capella - Kraus et al. 2005

Masking the Keck

NPOI Flagstaff, Arizona

Closure Phase Science: Target Classes

Binaries Evolved Stars Surfaces Circumstellar Dust Young Stellar Objects Circumstellar matter in Hot Stars Stellar Surface Imaging Binaries II

Highly Evolved Stars

Grand-cycle-of-matter

- >50% of ISM enrichment (all dust nuclei)
- Uniquely rich astro-chemistry
- Implications for stellar populations (defusing SN, perturbing ISM)
- Probes of distance, structure, metallicity
 - High Luminosity, tight P-L relation
- Fascinating astrophysics lab
 - Masers, radiation-driven winds, shocks
 - Mass-Loss, PNe Formation, disks

M-Giant Photospheres

The Evolving Face of Betelgeuse

Buscher et al 1990 MNRAS 245 7 Wilson et al 1997 MNRAS 291 819 Young et al 2000 MNRAS 315 635

WHT 700nm

COAST 905nm

COAST 1290nm

Physical models of IRC +10216

III.—Effect of different dust-thirlding treatments on the CO photocoiation rate. Note how the effect of self-consistent dust radiative trans-(model B) can change the dissociation rate by over an order of nitude over a model with semianalytic radiative transfer through dust del A).

2,1, General

Spherical Cows

We assume that the gas in IRC +10216 expands in a spherically symmetric outflow with a speed of v = 16 km s⁻¹ and with a mass-loss rate of $5 \times 10^{-5} M_{\odot}$ yr⁻¹. The UV dust opacity is taken to be $\tau_{1000} = \tau(1000 \text{ Å}) = 12.7$ from $r_{\rm in} = 10^{16}$ cm to the outer edge (NM), and the temperature distribution is taken from the fit by MGH to the Kwan & Linke (1982) temperature profile for IRC + 10216.

IRC+10216 – Case Study (Also UKIRT Masking Haniff and Buscher 1998) d **K Dec 1997** 400 200 0 200 **Keck Masking** 200 mas 2.17 μm (K'), 6/98, Φ=0.39 Tuthill et al 2000; 2005 400 **Russian SAO Speckle** -400 Weigelt et al 1998+ 400 -200 200 Milliarcseconds

IRC+10216: Carbon star/PPNE

3.5 years motion

Mass-loss in inner regions asymmetric and clumpy, outer regions spherical.

- Onset of Bipolarity ?
- Time-lapse studies with a tagged flow – directions and accelerations!
- New Dust Nucleation?

Tuthill et al. ApJ 2000 Tuthill et al. ApJ 2005

Key Idea: What are closure phases good for?

Closure Phases lift degeneracy

CLP Imaging Evolved Stars

V Hydrae at 3.08µm

Teaser Images from Aperture Masking CIT 6

Monnier et al.

ApJ 2000

Tuthill et al.

2006 in prep.

Extreme mass-losing sgiant VY CMa

VY CMa - Jan97

Monnier et al. ApJ 1999

Multi-Facility Synthesis

Carbon Star V Hya

Multi-Instrument Synthesis

Weiner et al 2006 ApJ 636 1067 Berkeley ISI + Keck Mask: Mid-IR closure phase imaging

`The Mira Imaging Project' (IOTA, ISI, VLBA)

First Results: 56 AGB stars

Ragland et al. 2006

- 29% of sample AGB stars show asymmetry
- 75% of well-resolved stars show asymmetry
- 100% of well-resolved O-rich Miras asymmetric
- All Miras probably asymmetric
- More Fourier Coverage needed for incisive astrophysics

4 models; disk + various spots/circumstellar features

Young Stellar Objects

to the share of the state of th

Art Credit: Luis Belerique

$\label{eq:LkHa} LkH\alpha \ 101: \ Our \ closest \ image \ of \\ a \ starbirth$

50 mas (10 AU)

Tuthill et al. Nature 2001, Tuthill et al. ApJ 2002 Face-on view of Herbig Ae/Be star

- Settle debate:
 Disk vs Envelope
- SED fitting ambiguous: central cavities now proven
- Too Large (order of mag)
 Overturns power-law
 thermal profiles
- Disk cavity physics governed by dust sublimation radius
- Asymmetric Brightening –

inclined line of sight.

Accretion Disk Geometry

Dullemond et al. A&A 2001

Towards an Imaging Array: Closure Phases with IOTA3

IOTA Fourier Coverage

Expected YSO Closure Phases

Closure Phase is function of

Amount of <u>skewness</u> (deviation from centro-symmetry)
Resolution of Interferometer (point sources all look symmetrical..)
Brightness distribution (model-dependent = good)

LkHa 101 Image

Tuthill et al. 2002

Why should we expect skew? Ist Gen models have vertical walls

Curved Rim - E = 0.58 - Vertical Rim

Modeling: Monnier Harries and Tannirkulam

Empirical Models of Skew Disks

Simple Empirical Models of Asymmetric Disk Emission

IOTA/IONIC3 YSO Closure Phases

DDN Model – predicted closure phase

Skew Disk – predicted closure phase

HD 45677 – a case study in parametric imaging

HD 45677 – Parametric Imaging Results

Special Case: AB Aur Disk A Closure Phase Myste

Grady et al. 1999

AB Aur Results

Long Baselines -> zero closure phase
 Point-Symmetric on scales of 4-10 milliarcseconds

Short Baselines -> non-zero closure phase
 Asymmetric on scales of 10-50 milliarcseconds
 4 degrees CP corresonds to ~7% asymmetry

What could this be?

ra(mas)

15

Table 1. Results from Fitting to "Disk Hot Spot" Model^a

Model Description	Frac Star	ction of I Disk	Light Spot	Disk Properties	Spot Properties	Reduced χ^2 (V ² ,CP)
Unresolved hot spot with non-skewed disk ^b	0.3	0.68	0.02	Ring Diameter 3.6 mas Ring Width/Diameter 0.25	Unresolved Spot $r_G = 9 \text{ mas at PA } 22^{\circ}$	1.5
Gaussian hot spot with skewed disk	0.3	0.62	0.08	Ring Diameter 3.1 mas Ring Width/Diameter 0.5 Max Skew=1.0 at PA 172°	Gaussian FWHM 12 mas r_G =29 mas at PA 12°	1.8

YSO imaging – plenty still to do...

Tidal Tails

Spiral Density Waves

Simulations Courtesy Sarah Maddison

WR 104: The prototype Pinwheel Nebula

WR 104 50 mas (75 AU)

Tuthill et al,

Nature 1999

- Orbital Period 243.5 +/- 3 days
- Inclination 11 +/- 7 deg
- Motion 111 +/- 9 milliarcsec/yr
- Assuming wind 1220km/sec then dist=2.3+/-.7 kpc
- Central binary only 1-2 milliarcseconds separation, but geometric orbit inflated by the dust plume
- Highly circular orbit implies likely tidal circularization episode in the history of this binary.
- Current separation of components approximately equal to the radius of a red supergiant.
- These in turn point to Roche Lobe overflow to precipitate the WR stage in this star.
- Rotating `Eclipse' at 1 turn (optically thick dust)

WR 98: A second Wolf-Rayet Colliding Wind Binary

WR 98a

100 mas

Monnier, Tuthill & Danchi ApJ 2000

- Orbital Period 565 +/- 50 days
- Inclination 35 +/- 6 deg
- Motion 99 +/- 23 milliarcsec/yr
- Assuming wind 900km/sec then dist=1.9 kpc
- Error in Distance is limited by wind speed (spectroscopy)
- Clear regular photometric variations associated with orbital period
- If lightcurve *is* linked to Variable dust production then the eccentric orbit does not favor tidal circularization. Are Roche Lobe overflow models OK with this?

Optically thin: orientation effects

$\Theta = 0 \deg \qquad \Theta = 40 \deg \qquad \Theta = 90 \deg$

Surface Asymmetry on Rapid Rotators

Isophotoal Contours of a close eclipsing binary

MODEL ECLIPSING BINARY

.93

Fig. 2. Typical isophotal contours on a distorted star: *Contours* are labeled with respect to unit brightness of the sub-earth point at quadrature. These isophotes exhibit the combined effects of limb darkening, gravity brightening, and reflection. The star has an inclination of 80° and a phase angle of 30°.

Wood 1971

Binaries and faint companions

Sparse-Aperture AO results: Closure-Phase Binary Fingerprints

STEPS binaries (Pravdo & Shaklan)

M-Dwarfs with Astrometric Companions

High dynamic range, high angular resolution. M-Dwarf G78-28 Low-mass binary

Brightness Ratio

Closure Phase

Triangle (index)

Separation (mas)

G78-28 orbital data summary

Pravdo et al. ApJ 2006

Direct Detection Brown Dwarf GJ 802B (AO masking interferometry)

Lloyd et al. ApJ 2006 (submitted)

Science Case: Measuring Spectra of Hot Jupiters

Precision Closure Phase --State of the Art

CHARA Closure Phase Stability

Conclusions

- Historically, masking interferometry has delivered interesting precursor science to long baseline interferometric imaging.
- Imaging with long baseline interferometers is almost there, but we still lack an efficient imaging machine.
- Brown dwarfs are now possible with masking next step planets.
- Long baselines interferometers advancing rapidly.

Lenticular (wave) cloud Mauna Kea, 95mph winds

Thank You!