

Pain-Planets with PANSTARRSI

And: CfA, John Hopkins Uni., UK Consortium, Centr. Uni. Taiwan

Pan-STARS

Panoramic Survey Telescope and

Rapid Response System

The renaissance of wide-field imaging

- Wide-field imaging (e.g. Palomar, UKST sky surveys) fell into decline with advent of CCDs (high QE, tiny FOV)
- Subsequent decades have seen
- Exponential growth in area of detectors
- Matching growth of computer hardware
- Major investment in image reduction software
- Current state of the art
- CFHT/Megacam (3.6m/300Mpix)
- Subaru/Suprime (8m/100Mpix)
- First optical/near-IR digital surveys complete (SDSS, 2MASS ...)

Pan-STARRS 1

- 1.8m R-C + corrector (f/4)
-7 square degree FOV
- 1.4 Gpixel camera
- Sited on Haleakala (Maui)
- 490 square deg/hour

- All sky + deep field surveys in g,r,i,z,y

Pan-STARRS Deployment Plan

- PS1
-Single telescope to be deployed on Haleakala, Maui
-To operate from 2007 through 2010
- PS4
-Full-scale system to be deployed ca. 2010
-To be sited on Mauna Kea
-~10 years mission lifetime

Haleakala High Altitude Observatory Site The Pan-STARRS 1 Project

Detectors: The Orthogonal Transfer Array

A new paradigm in large imagers.
Partition a conventional large-area CCD imager into an array of independently addressable CCDs (cells).

64 OTAs in the focal plane of each detector

OTA Quantum Efficiency

- OTAs demonstrate expected QE $\left(-65^{\circ} \mathrm{C}\right)$

Pan-STARRS Bandpasses

Pan-STARRS overview

- Time domain astronomy
- Transient objects
- Moving objects
- Variable objects
- Static sky science
- Enabled by stacking repeated scans to form a collection of ultra-deep static sky images

Scientific Goals

- Inner Solar System Science (10^{7} asteroids, 10^{4} NEO)
- Outer Solar System (Trans Neptunian Objects)
- Stars and the Galaxy
(Complete stellar census to 100 pc , Best substellar IMF, proper motion of most stars in the MW, merger tidal tails in halo, halo structure, ...)
- Static Sky Cosmology
(Weak Lensing on very large angular scales (DM distribution), galaxy clustering, ...)
- Cosmology - Type la Supernova (Dark energy equation of state w(z), SF history, SN physics, ...)
- Census of short-time-scale transients (gamma-ray bursts, transits, ...)

A Search for Transiting Extra-Solar Planets with PANSTARRS

What is a Planet?

WORKING GROUP ON EXTRASOLAR PLANETS (WGESP) OF THE INTERNATIONAL ASTRONOMICAL UNION :

Deuterium Burning Limit: Objects with true masses below the limiting mass for thermonuclear fusion of deuterium, equal to be 13 Jupiter masses for objects of solar metallicity, that orbit stars or stellar remmants are "ptanets" (no matter how they formed).

A Search for Transiting Extra-Solar Planets with PANSTARRS Pan-Planets

Transit Method : temporary occultation or transit when the planet passes in front of the parent star causing a drop in its brightness

HST lightcurves of Tres-1 and HD209458
Brown et al., 2001, 2006

Transit Observables :

- Transit depth $\mathrm{dF}=\left(\mathrm{Rp} / \mathrm{R}^{*}\right)^{2}$-> radius Rp
(dF ~ 1\% Jupiter-like planet transiting sun-like star)
-Period $\mathrm{P}=\left(4 \pi^{2} \mathrm{a}^{3} / \mathrm{GM}{ }^{*}\right)^{1 / 2}->$ orbital radius a
- Transit duration $\left(\mathrm{t}_{\text {flat }} / \mathrm{t}_{\mathrm{T}}\right)^{2}=\left(\left[1-\mathrm{Rp}_{\mathrm{p}} / \mathrm{R}_{\cdot}\right]^{2-}\right.$ $\left.\left[\left(D / R_{-}\right) \backslash \cos i\right]^{2}\right)\left(\left[1+\mathrm{Rp}_{\mathrm{i}} / \mathrm{R}_{\cdot}\right]^{2}-\left[\left(\mathrm{D} / \mathrm{R}_{\cdot}\right) \backslash \cos \mathrm{i}\right]^{2}\right)->$ inclination angle i (if R_{*}, M_{*} are known)
$\cdot i+R V$-> planetary mass and density!

Results of Transits Surveys

Presently 22 transiting extrasolar planets are known (among more than 200 planets): 13 Very Hot Jupiters (Periods < 3 days), 9 Hot Jupiters (Periods >= 3 days)

Originally detecte	V	M/Msun	Type	Rp/RJup	Mp/MJup	P (days)	a (AU)
HD209458b	7.7	-	GOV	1.32	0.69	3.5	0.045
HD149026b	8.2	1.3	GOIV	0.72	0.36	2.9	0.042
	7.7		K1-K2	1.15	1.15	2.2	0.0313
OGLE Survey (Tel OGLE-TR-56b	1	M/Msun	Type	Rp/RJup	Mp/MJup	P (days)	a (AU)
	16.6	1.04	G	1.23	1.45	1.2	0.0225
OGLE-TR-111b OGLE-TR-113b OGLE-TR-132b OGLE-TR-10b	15.5	0.82	G or K	1.00	0.53	4.0	0.047
	14.4	0.77	K	1.08	1.35	1.4	0.0229
	15.7	1.35	F	1.13	1.19	1.6	0.0306
Trans-Atlantic Ex	14.9	1.2	G or K	1.16	0.54	3.1	00416
TrES-1 TrES-2 TrES-3	V	M/Msun	Type	Rp/RJup	Mp/MJup	P (days)	a (AU)
	11.8	-	KOV	1.08	0.75	3.0	0.0393
	11.4	1.08	GOV	1.24	1.28	2.5	0.0367
	12.4	0.9		1.29	1.92	1.3	0.0226

Results of Transit Surveys

Presently 22 transiting extrasolar planets are known (among more than 200 planets):
13 Very Hot Jupiters (Periods < 3 days), 9 Hot Jupiters (Periods >= 3 days)
XO Project
XO-1
XO-2
XO-3

V	M/Msun	Type	Rp/RJup	Mp/MJup	P (days)	a (AU)
11.3	1	G1V	1.18	0.9	3.9	0.048
11.8	0.98	K0V	0.97	0.57	2.61	0.036
10		F6		12	3.19	

HATNet Project HAT-P-1b HAT-P-2b	V	M/Msun	Type	Rp/RJup	Mp/MJup	P (days)	$\mathrm{a}(\mathrm{AU})$
10.4	1.12	G 04	1.36	0.53	4.46	0.055	
8.7	1.29	F8	0.98	9.04	5.63		

Superwasp Project WASP-1 WASP-2	I	M/Msun	Type	Rp/RJup	Mp/MJup	P (days)	a (AU)
	11.9	1.15	F7V	1.93	0.89	2.51	0.038
	11.8	0.79	K1V	0.95	0.88	2.15	0.030
SWEEPS Project SWEEPS-4 SWEEPS-11	V	M/Msun	Type	Rp/RJup	Mp/MJup	P (days)	a (AU)
	18.8	1.24	-	0.81	<3.8	4.2	0.055
	19.8	1.1	-	1.13	9.7	1.79	0.03

Results of Transit Surveys - III

Presently 22 transiting extrasolar planets are known (among more than 200 planets): 13 Very Hot Jupiters (Periods < 3 days), 9 Hot Jupiters (Periods >= 3 days)

CoRoT Project CoRoT-Exo-1

V	M/Msun	Type	Rp/RJup	Mp/MJup	P (days)	a (AU)
13.5	1	G1V	1.65	1.3	1.5	

GJ 436b

V	M/Msun	Type	Rp/RJup	Mp/MJup	P (days)	a (AU)
10.68	0.44	M2.5	0.35	0.071	2.64	0.0285

OGLE-TR-113

Planet Parameters

$\mathrm{Mp}=1.3 \mathrm{M}_{\text {Jup }}$

$R p=1 R_{\text {Jup }}$
Orbital Radius $=0.03 \mathrm{AU}$
Period $=1.43$ days
Inclination = 88 deg
Eccentricity = 0

Spectral Type - K
I = 14.4 mag
$\mathrm{M}_{\text {star }}=0.77 \mathrm{M}_{\text {sun }}$
$R_{\text {star }}=078 R_{\text {sun }}$
Limb Darkening Coef. (I)=0.58

Results of Transit Surveys - II

Bakos et al. 2006

Strength and Weakness of the Transit Method

- Strength:
- Radius of planet can be inferred from transit depth (Rp/R.) ${ }^{2}$
- Sensitive to planets in the habitable zone
- True survey : all stars observed in the same manner
- Planetary atmospheres
- Detection of planetary satellites and circumplanetary rings
- Weakness:
- Orbital plane must be nearly edge-on : geometric probability Pg~D./2a -> 0.5% for our Earth.
- False positives are a major concern:
- grazing eclipsing binaries
- transits of small stars in front of a large star
- blended eclipsing binaries with deep eclipses

Competitiveness of Pan-Planets in the Current Context

 Transit Surveys from the GroundTransit Search Programmes

Programme	$\underset{(\mathbf{c m})}{\mathrm{D}}$	focal ratio	$\begin{aligned} & \mathbf{W}^{0.5} \\ & (\mathrm{deg}) \end{aligned}$	$\underset{(\mathbf{k p i x})}{\mathbf{N}_{\mathbf{x}}}$	$\underset{(\mathbf{k p i x})}{\mathbf{N}_{\mathbf{y}}}$	$\begin{aligned} & \text { no. of } \\ & \text { CCDs } \end{aligned}$	$\begin{gathered} \text { pixel } \\ \text { (arcsec) } \end{gathered}$	sky mag	star mag	$\begin{gathered} \mathbf{d} \\ (\mathbf{p c}) \end{gathered}$	$\begin{gathered} \text { stars } \\ \left(\mathbf{x 1 0}^{3}\right) \end{gathered}$
1 PASS	2.5	2.0	127.25	2.0	2.0	15	57.75	6.8	9.4	83	18
$\underline{2}$ WASP0	6.4	2.8	8.84	2.0	2.0	1	15.54	9.6	11.8	246	2
$\underline{3}$ ASAS-3	7.1	2.8	11.21	2.0	2.0	2	13.93	9.9	12.0	272	5
4 RAPTOR	7.0	1.2	55.32	2.0	2.0	8	34.38	7.9	11.1	179	33
5 TrES	10.0	2.9	10.51	2.0	2.0	3	10.67	10.5	12.7	362	10
6 HATnet	11.1	1.8	19.42	2.0	2.0	6	13.94	9.9	12.5	338	28
7 SWASP	11.1	1.8	31.71	2.0	2.0	16	13.94	9.9	12.5	338	74
$\underline{8}$ Vulcan	12.0	2.5	7.04	4.0	4.0	1	6.19	11.6	13.4	497	12
9 RAPTOR-F	14.0	2.8	5.93	2.0	2.0	2	7.37	11.3	13.4	498	8
10 BEST	19.5	2.7	3.01	2.0	2.0	1	5.29	12.0	14.2	668	5
11 Vulcan-S	20.3	1.5	6.94	4.0	4.0	1	6.10	11.7	14.1	642	24
$12 \mathrm{SSO} / \mathrm{APT}$	50.0			2.9	5.9	2	4.20	12.5	15.5	1103	126
13 TeMPEST		3.0	0.77			1	1.35	15.0	17.1	1944	8
14 EXPLORE-0	101.6	7.0	0.32	2.0		1	0.44	17.1	18.4	2881	5
15 PISCES	120.0	7.7	0.38	2.0		4	0.33	17.1	18.6	3045	8
16 ASP	130.0	13.5	0.17	2.0	2.0	1	0.30	17.1	18.7	3125	2
17 OGLE-III	130.0	9.2	0.59	2.0	4.0	8	0.26	17.1	18.7	3125	20
18 STEPSS	240.0	0.0	0.41	4.0	2.0	8	0.18	17.1	19.5	3757	17
19 INT	250.0	3.0	0.60	2.0	4.0	4	0.37	17.1	19.5	3800	37
$\underline{20}$ ONC	254.0	3.3	0.53	2.0		4	0.33	17.1	19.5	3817	30
$\underline{21}$ EXPLORE-N		4.2	0.57	2.0		12	0.21	17.1	19.9	4196	46
$\underline{22}$ EXPLORE-S	4000	2.9	0.61	L.0	4.0	8	0.27	17.1	20.0	4313	58

All projects with telescope sizes similar to PS1 have FOV < 0.4 sqdeg.

PS1 has fast read-out (few seconds), and quick telescope slew

Pan-Planets

Observing Strategy :

- 180 hours/year equivalent to 30 day campaign/year (6 hours/night)
- 3 hours blocks/night
- 2 targets : in the field and toward an open cluster
- One image every 2 min. allowing to reach $\mathrm{I}=16 \mathrm{mag}$ (and read-out + telescope slewing to next field)
- 3 fields covering $21 \mathrm{deg}^{2}$ with time sampling equal to 6 min .

Expected Results :

For a target in the field

- Besançon Models predict 1.4 million stars with 480,000 dwarfs in 3 fields
- Assuming photometric precision of 0.3% for $\mathrm{l}=13 \mathrm{mag}$ to 1% for $\mathrm{l}=16 \mathrm{mag}$

Simulations

~ 100 Jupiter-like planets in 3 years !

Follow-up Strategy of the Candidates

False positives are a major concern:

- grazing eclipsing binaries
- transits of small stars in front of a large star
- blended eclipsing binaries with deep eclipses
- Multi-band and High-Cadence Photometry for blend identification through color changes and morphological features (ellipsoidal variation)
- Low Resolution Spectroscopy to identify spectral type of stars, constraint the sources size. This allows to rule out giant contaminants, and mass and radius determination of the planets
- Medium Resolution Radial Velocity to select grazing eclipsing binaries. Expected amplitudes are several tens of kms^{-1}, whereas hundred ms^{-1} for a Jupiter-mass planet around a sun-like star
- High-Resolution Radial Velocity to confirm planetary transits on a sample with minimal contamination.

Prospects for Pan-STARRS

- PANSTARRS project has an exceptional potential for transit searches due to the combination :
- large FOV = 7 deg2
- significant telescope size of 1.8 m
- fast read-out of the CCD camera (few seconds)
- quick slew of the telescope
- These features allow frequent monitoring of several 100,000 stars in only one field, and million of stars in two or more fields!
- PAN-STARRS would devote 30 days per year during 3 years to search for transiting planets, harvesting more than 100 H and VH Jupiter likeplanets.

