

Suzanne Aigrain on behalf of the CoRoT exoplanet science team

Why space?

- Atmosphere limits precision photometry from the ground
 - Scintillation limit ~2 mmag
- Representative transit depths for Sun-like star
 - Jupiter: 10 mmag
 - Neptune: I.3 mmag
 - Earth: 0.1 mmag
- Weather and daytime limit temporal coverage from the ground
- Many sources of noise transit timescales removed
 - colour dependent differential extinction, seeing, etc...

27 December 2006

alt deal

200.00

- P

-

The satellite

- PI: Annie Baglin, LESIA, Meudon
- CNES PROTEUS bus
- 27cm aperture telescope
- Soyuz II-1b launcher from Baikonour
- Polar orbit
- 2.5 year minimum lifetime

Payload

Focal plane

- Sismo field
 - 5 windows / CCD
 - $5.7 < m_V < 9.5$
 - 32s sampling (1s on request)

2.8°

- frame transfer mode
- used for astrometry

Pointing stability

x-coord of stellar image barycenter

RMS stability: 0.12 pixel in x 0.15 pixel in y ~0.3 arcsec

vibrations due to Earth eclipse ingress and egress

- Exo field
 - up to 6000 LCs / CCD
 - 11.5 < m_V < 16
 - 512s sampling (32s for 500 objects / CCD)
 - 3 colours for ~ 4500 objects / CCD with $m_V < 15$
 - some small background windows
 - up to 40 10x15 pixel windows
 - on-board aperture photometry using mask selected form 256 templates based on one initial long integration image

- Exo field
 - up to 6000 LCs / CCD
 - 11.5 < m_V < 16
 - 512s sampling (32s for 500 objects / CCD)
 - 3 colours for ~ 4500 objects / CCD with $m_V < 15$
 - some small background windows
 - up to 40 10x15 pixel windows
 - on-board aperture photometry using mask selected form 256 templates based on one initial long integration image

Observing strategy

- Sequence:
 - ~I month commissioning
 - I initial run (early science, ~50d)
 - then 5 x (150d long run + 21d short run)
 - rotate satellite every 6 months
 - Ist long run Galactic centre in March 2007
- Visibility zone
 - sun angle constraints imply 2 'CoRoT eyes'
 - 10° diameter, small drift over 2.5 yr lifetime
 - intersection of ecliptic & Galactic planes
 - field selection = compromise

Field	Dur. (d)	RA	Dec	Rot* (°)
IRI	~60	06:50:25	-01:42:00	+14.96
LRcI	150	19:23:28.8	+00:28:48	+19.0
LRal	150	06:46:48.0	-00:11:24	+7.3

*N-S direction: Rot = -5° in centre, $+5^{\circ}$ in anticentre

South Atlantic Anomaly

SAA shifted ~8° NW compared to previous AP8min model (L. Pinheiro)

Example charged particle deposit on Exo CCD

Straylight background

Folded on orbital period

Duty cycle

Example background light curve

Source of gaps: SAA (6%) other random events (1-2%) → Duty cycle 92%

Hot pixels 10x more frequent than expected

Exoplanet noise budget

- Nominal noise budget
 - white noise
 - readout, background, jitter
 - see plot
 - orbital period (6174s)
 - jitter, temperature, residual straylight
 - 120 ppm
- Stellar variability
 - few tens of ppm over transit timescale
- Correlated noise?
 - Blind test light curves contain 0.5 mmag red noise after detrending

RAW performance in the exo field

Mv ~15.4 RMS = 1170 ppm Photon noise = 1080 ppm

Mv ~12.3 RMS = 400 ppm photon noise = 400 ppm

Already close to specification despite incomplete processing

Stellar micro-variability

- Rotational modulation & intrinsic evolution of surface structures (spots, faculae, granules)
- Roughly I/f noise spectrum
- Very ill characterised in stars other than the Sun
- Attempts at predicting micro-variability for other stars (Aigrain, Favata & Gilmore 2004, Lanza et al. 2005)
- Could be a serious impediment to terrestrial transit detection from space
- Temporal signature different from transits

Example light curves from the seismo field

Blind test l detection

- 999 simulated light curves
 - White light only
 - Diverse signals (rather than representative)
 - Pessimistic instrumental noise + variability
 - Content known only to "game master"
- 5 teams attempted detection
 - Fourier domain filtering successfully curbs most stellar variability
 - Best detection with BLS or similar
 - No ability to distinguish background EBs

Blind test 2 - characterisation

- 236 simulated light curves
 - 3 colours
 - Include contaminant info
 - all contain a signal
- 8 teams attempted detection & characterisation
 - Simplistic colour or transit duration tests dangerous
 - Checks for 2ary eclipses & ellipsoidal variation robust
 - Many BEBs can be identified from LC + contaminant information alone
 - Thoughest type of contaminant to identify is low mass companion - easy RV

- Light curve filtering & transit detection
- Detailed LC analysis in conjunction with EXODAT database:
 - deep UVRIJHK catalog
 - SpT estimate of CoRoT targets
 - contamination estimate
 - Photometric follow-up 🗲
 - which star in the PSF varies?
- → RV follow-up (HARPS) ←
 - companion mass
 - Spectroscopy of parent star 🗲
 - stellar parameters
 - Real time candidate prioritisation & coordination of follow-up effort

COROT is well matched to current RV facilities

Expected detections

- CoRoTLux simulator (Gillot, Fressin et al)
 - See talk by F. Fressin tomorrow for details
- Results over entire mission
 - 80 Hot Jupiters (15% P>10 days; nearly as many in short runs as long)
 - 15-30 Hot Neptunes (3-4 R_{\oplus} ; almost all in short runs)
 - Possibly a few terrestrial planets (~2 R_{\oplus})
 - Bbout 100 candidates per run, 50 of which survive to follow-up stage
- But...
 - Assumes low-mass planets more abundant than giants
 - More astrophysical false alarms if shallower transits accepted

Initial run results

- Initial run: 60 days in Feb March 2007
- Several transit/eclipse candidates identified by automatic 'alarm mode' software at LAM based on partial datasets from initial run and first long run
- Spectroscopic and photometric follow-up tests in April and July

Spectra from SOPHIE@OHP, ground-based photometric confirmation from WISE 1m and BEST More & better spectra needed to improve stellar parameters and mass ratio estimate

more candidate images

Cit.

Ultraprecise Hot Jupiter light curves

HD209458b with HST (Brown et al. 2000)

Transit timing

CoRoT-exo-1b transits observed 40 times

Individual transits can be timed to ~ 30-40s

Would easily detect non-transiting Earth-mass planets in a variety of outer orbits

But... extremely sensitive to red noise - need fully processed data

Solid exoplanets

 ${\rm R}/{\rm R}_\oplus$

- Will we be able to differentiate between planet mostly made of
 - H/He
 - ^H2^O
 - MgSiO3
 - Fe
 - a mixture?
- Simple calculation hydrostatic equilibrium + EoS - gives mass-radius relation for hypothetical planets

Seager, Kuchner, Hier-Majumder, Millitzer (in prep.) exoplanets Current solar system planets surveys H/He H_O 10 Fe/MgSiO₃/H₂O MgSiO, CoRoT/present RV 1 Kepler/future RV 0.1 10 100 1000 1 M/M_{\oplus}

Solid exoplanets

Seager, Kuchner, Hier-Majumder, Millitzer (in prep.)

Will be able to tell bulk composition but not much more

Summary

- CoRoT is working extremely well
 - all systems nominal, some significantly better
 - should be sensitive to planets barely larger than the Earth
- First science results still under analysis
 - a large transiting very hot jupiter, several candiates, many EBs
 - clear detection of oscillations in Sun-like star, Scuti, etc...
 - dozens of variables of all types
- Timeline:
 - First data release to co-ls later in 2007
 - Data becomes public I year after release to Co-Is
 - First long run started end may
 - Follow-up in late summer for alarm mode candidates, spring / summer 2008 for the rest

More info: http://corot.oamp.fr/

The CoRoT Book ESA-SP 1306 (in press), eds. M. Fridlund, A. Baglin, L. Conroy and J. Lochard