rendipitous
 Detech n of Transiting Plane in Future Synopi Surveys

B. Scott Gaudi (Ohio State Univers

Special Thanks To...

- Thomas Beatty (CfA,MIT)
- Cullen Blake (CfA)

$$
\begin{gathered}
\text { Detecting } \\
\text { Transiting } \\
\text { Planets }
\end{gathered}
$$

Properties of current transit surveys

- Reach a required S/N on enough mainsequence stars to detect a transiting planet
- For a given type of star (i.e. FGK dwarfs):
- At what depth (i.e. limiting magnitude) do you have enough stars in your survey area?
- S/N should be larger than some required minimum value at that depth

$$
\frac{S}{N} \approx N^{1 / 2} \frac{\delta}{\sigma}
$$

Properties of current transit surveys

- Reach a required S/N on enough mainsequence stars to detect a transiting planet
- For current dedicated surveys for transiting planets:
- At the depth where there enough stars to detect a planet:
- S/N per point is low
- Detection achieved using many points

Brighter Stars?

- For brighter stars, detection could be achieved with fewer points, but...
- Correlated noise
- Not enough stars
$N \propto 10^{-0.6 \Delta m}$

A Different Regime:
 Sparse Sampling, Large Area, Few Observations

Avoid correlated noise:

- Sample on timescales >> correlation timescale

Sufficient number of stars:

- Very wide area

This is the precisely the regime of future large synoptic surveys!!

Synoptic Surveys

Future Synoptic Surveys

Synoptic, adj,

1. pertaining to or constituting a synopsis; affording or taking a general view of the principal parts of a subject.
2. Meteorology Of or relating to data obtained nearly simultaneously over a large area of the atmosphere.

Astronomer's definition: Repeated observations of a large area of the sky.

Current/Future Synoptic Surveys

SDSS-II
- now
Pan-STARSS
- Early 2008 LSST
- 2012
MPF

-?

Estimating the Yields of

Synoptic Surveys (with Thomas Beatty)

Estimating the Yields

- Accurate estimates difficult.
- Depend on:
- survey strategy
- equipment specifications
- data analysis methods
- Approximate yields
- Estimate total number of main-sequence stars in survey area
- Estimate the number of transiting planets
- Estimate limiting magnitude

Estimating the Sky Densities

Present-Day Mass Function
M-L, M-R relations
Double Exponential Thin Disk
$\mathbf{M}_{\mathbf{v}}$-dependent scale height
Extinction
Transit Probability
Gould et al (2006) frequencies

Beatty \& Gaudi (in prep)

Sky Densities, Sun-like Stars

V Mag. Limit	Gal. Plane	Gal. Poles	All-Sky Average
$V<12$	$\mathbf{0 . 0 0 3}$	$\mathbf{0 . 0 0 2}$	$\mathbf{0 . 0 0 2}$
$V<14$	$\mathbf{0 . 0 2 9}$	0.009	0.017
$V<16$	0.219	0.025	0.087
$V<18$	1.125	0.026	0.293
$V<20$	4.052	0.027	$\mathbf{0 . 8 0 0}$

Sky Densities, M Dwarfs

V Mag. Limit	Gal. Plane	Gal. Poles	All-Sky Average
$\mathbf{V}<12$	$\mathbf{0 . 0 0 0 0 1}$	$\mathbf{0 . 0 0 0 0 1}$	$\mathbf{0 . 0 0 0 0 1}$
$\mathbf{V}<14$	$\mathbf{0 . 0 0 0 1 7}$	$\mathbf{0 . 0 0 0 1 5}$	$\mathbf{0 . 0 0 0 1 6}$
$\mathbf{V}<16$	$\mathbf{0 . 0 0 4 7}$	$\mathbf{0 . 0 0 1 5}$	$\mathbf{0 . 0 0 2 8}$
$\mathbf{V}<18$	$\mathbf{0 . 0 2 5 7}$	$\mathbf{0 . 0 1 0 5}$	$\mathbf{0 . 0 1 6 9}$
$\mathbf{V}<\mathbf{2 0}$	$\mathbf{0 . 2 0 8 1}$	$\mathbf{0 . 0 3 6 8}$	$\mathbf{0 . 0 9 8 9}$

Limiting Magnitudes
 $$
\frac{S}{N} \approx N^{1 / 2} \frac{\delta}{\sigma}
$$
 (

$$
N \approx \frac{R}{\pi a} N_{\text {total }} \quad N_{\text {total }}=\frac{\varepsilon T}{t_{\exp } N_{\text {fields }}} \quad N_{\text {fields }}=\frac{\Omega_{\text {survey }}}{\Omega_{F O V}}
$$

$$
\frac{S}{N}=\left(\frac{\varepsilon T}{t_{\exp }} \frac{\Omega_{\text {FOV }}}{\Omega_{\text {survey }}} \frac{R}{\pi a}\right)^{1 / 2} \frac{\delta}{\sigma}
$$

Limiting Magnitudes

$$
\frac{S}{N}=\left(\frac{\varepsilon T}{t_{\text {exp }}} \frac{\Omega_{\text {survey }}}{\Omega_{F O V}} \frac{R}{\pi a}\right)^{1 / 2} \frac{\delta}{\sigma} \quad \sigma=\sigma_{0}\left(\frac{t_{\text {exp }}}{t_{\text {exp, }, 0}}\right)^{1 / 2}\left(\frac{D}{D_{0}}\right) 10^{0.2\left(V-V_{0}\right)}
$$

$$
V_{\lim }=5 \log \left[\left(\frac{\varepsilon T}{t_{\text {exx. }, 0}} \frac{\Omega_{\text {FOV }}}{\Omega_{\text {survey }}} \frac{R}{\pi a}\right)^{1 / 2} \frac{D}{D_{0}} \frac{\delta}{\sigma}\left(\frac{S}{N}\right)^{-1}\right]+V_{0}
$$

Magnitude Limits and Yields

SDSS Magnitude Limits and Yields

- SDSS-II
- Observation time $=37.5$ days
- Telescope Diameter $=2.5 \mathrm{~m}$

- Efficiency = 0.5
- Field of View $=6.25$ deg 2
- Area Surveyed=300 deg ${ }^{2}$
- Magnitude limits
- Sun-like stars = 15.6
- M dwarfs = 20.2
- Total Yields for $\mathbf{S} / \mathbf{N}=\mathbf{2 0}$

- Sun-like stars = 6
- M-dwarfs = 12

Pan-STARRS Magnitude Limits and Yields

- Pan-STARRS (Medium-Deep)
- Observation time $=5$ months
- Telescope Diameter $=1.8 \mathrm{~m}$
- Efficiency $=0.5$
- Field of View $=7 \mathrm{deg}^{2}$
- Area Surveyed=1200 deg 2
- Magnitude limits
- Sun-like stars = 14.99
- M dwarfs = 19.61
- Total Yields for $\mathbf{S} / \mathbf{N}=\mathbf{2 0}$
- Sun-like stars = 19
- M-dwarfs = 37

Pan-STARRS Magnitude Limits and Yields

- Pan-STARRS (Wide??)
- Observation time = 5 months
- Telescope Diameter $=1.8 \mathrm{~m}$
- Efficiency $=0.5$

Pan-STARRS

- Field of View $=7 \mathrm{deg}^{2}$
- Area Surveyed=12,000 deg²
- Magnitude limits
- Sun-like stars = 12.5
- M dwarfs = 17.1
- Total Yields for $\mathbf{S} / \mathbf{N}=\mathbf{2 0}$
- Sun-like stars $=48$
- M-dwarfs = 82

LSST Magnitude Limits and Yields

- LSST
- Observation time $=10$ years
- Telescope Diameter $=6.5 \mathrm{~m}$
- Efficiency = 0.5

- Field of View $=9.6$ deg 2
- Area Surveyed=20,000 deg^{2}
- Magnitude limits
- Sun-like stars $=18.5$
- M dwarfs = 23.1
- Total Yields for $\mathbf{S} / \mathbf{N}=\mathbf{2 0}$

- Sun-like stars = 7700
- M-dwarfs = 15500 (4000 to V~20)

A Worked

Example

(with Cullen Blake, Guillermo Torres, Josh Bloom)

SDSS-II Transit Search

- SDSS-II M dwarfs
- 300 deg 2
- Point sources
- i-z> 0.84
- $r<21.2$ (5\% precision)
- M4 and later
- r,i,z light curves for $\mathbf{1 9 , 0 0 0} \mathbf{M}$ dwarfs
- 10-30 observations in each band
- At most a few points in transit
- Transit Search
- Flux decreases of >0.2 mag
- All three bands
- Jupiter radii companions for $\mathbf{R}<\mathbf{0 . 2} \mathbf{R}_{\odot}$

Best Candidate

(Blake et al. 2007)

PAIRITEL Follow-Up

937 JHK measurements

(Blake et al. 2007)

LRIS Keck Spectra

Mass-Radius Constraints

(Blake et al. 2007)

Other DEB in SDSS-II

Estimate:

- Color-magnitude relations - Mass-magnitude relation - 30\% binary fraction
- Duquennoy \& Mayor q and P distributions.
$\bullet i<19$
- Double lined, K>30 km/s
- Luminosity ratio > 0.1
-10\% duty cycle
- Eclipse depth > 10\%

(Blake et al. 2007)

Planets?

Targets:

$\bullet i-z>0.37, i<19$
$\bullet 40,000$ targets with $\mathrm{R}<0.3 \mathrm{R}_{\odot}$
-Depths > 10\% for Jupiters
Planet Yield:
-21 HJ+VHJ
Follow-up:

- $\mathrm{K}>30 \mathrm{~km} / \mathrm{s}$
\bullet Msini>95M, for $P<3$ days
\bullet-IR spectroscopy?
Smaller Planets?
-Depths > 1\% for Neptunes
-Calibrate SDDS to better than 1% ?

The Coming Storm

An Embarrassment of Riches?

- LSST
- Sun-like stars $=7700$
- M-dwarfs = 15500 (4000 to V~20)
- Calibrate photometry to ~0.1\%?
- All fainter than $\mathrm{V}=16$
- 105-10 ${ }^{6}$ false positives?
- Is there anything we can do with these planets?

Microlensing Planet Finder

- Monitor $\boldsymbol{\sim} \mathbf{1 0}^{\mathbf{8}}$ MS stars
- 9 months/year, 4 years
- 15 minute sampling
- S/N~90 for 3 days
- ~30,000 Hot Jupiters
- S/N~P-1/3 \rightarrow Thousands of planets out to $\mathbf{P} \sim 2$ years
- Single Transits to tens of AU
- All will have I>20!

Statistical Analysis of Transit Candidates?

SWEEPS experience (Sahu et al. 2006)

-Statistical determination of the frequency of false positives
-Also model of Brown (2003)

More needs to be done:
-What are the uncertainties in these models?
-Variations in the binary fraction with environment?
-Do Kozai-created hierarchical triples (Fabrycky \& Tremaine, Wu et al) change the results?
-Can we determine $f\left(M_{*}, r, P\right)$ robustly from a statistical analysis?
Can we rule out false positives without RV (for shallow transits)?
-How useful are planet detections without planet mass?

$$
?
$$

