Serendipitous Detection of Transiting Planets in Future Synoptic Surveys

B. Scott Gaudi (Ohio State University)

Special Thanks To...

• Thomas Beatty (CfA,MIT)

• Cullen Blake (CfA)

Detecting Transiting Planets

Properties of current transit surveys

- Reach a required S/N on enough mainsequence stars to detect a transiting planet
- For a given type of star (i.e. FGK dwarfs):
 - At what depth (i.e. limiting magnitude) do you have enough stars in your survey area?
 - S/N should be larger than some required minimum value at that depth

$$\frac{S}{N} \approx N^{1/2} \frac{\delta}{\sigma}$$

Properties of current transit surveys

- Reach a required S/N on enough mainsequence stars to detect a transiting planet
- For current dedicated surveys for transiting planets:
 - At the depth where there enough stars to detect a planet:
 - S/N per point is low
 - Detection achieved using many points

Brighter Stars?

• For brighter stars, detection could be achieved with fewer points, but...

A Different Regime: Sparse Sampling, Large Area, Few Observations

Avoid correlated noise:

• Sample on timescales >> correlation timescale

Sufficient number of stars:

• Very wide area

This is the precisely the regime of future large synoptic surveys!!

Synoptic Surveys

Future Synoptic Surveys

Synoptic, adj,

1. pertaining to or constituting a synopsis; affording or taking a general view of the principal parts of a subject.

2. *Meteorology* Of or relating to data obtained nearly simultaneously over a large area of the atmosphere.

Astronomer's definition: Repeated observations of a large area of the sky.

Current/Future Synoptic Surveys

SDSS-II • now **Pan-STARSS** • Early 2008 LSST 2012 **MPF**

• ?

Estimating the Yields of Synoptic Surveys (with Thomas Beatty)

Estimating the Yields

- Accurate estimates difficult.
- Depend on:
 - survey strategy
 - equipment specifications
 - data analysis methods
- Approximate yields
 - Estimate total number of main-sequence stars in survey area
 - Estimate the number of transiting planets
 - Estimate limiting magnitude

Estimating the Sky Densities

Beatty & Gaudi (in prep)

70

80

90

Sky Densities, Sun-like Stars

V Mag. Limit	Gal. Plane	Gal. Poles	All-Sky Average
V<12	0.003	0.002	0.002
V<14	0.029	0.009	0.017
V<16	0.219	0.025	0.087
V<18	1.125	0.026	0.293
V<20	4.052	0.027	0.800

Sky Densities, M Dwarfs

V Mag. Limit	Gal. Plane	Gal. Poles	All-Sky Average
V<12	0.00001	0.00001	0.00001
V<14	0.00017	0.00015	0.00016
V<16	0.0047	0.0015	0.0028
V<18	0.0257	0.0105	0.0169
V<20	0.2081	0.0368	0.0989

Limiting Magnitudes

$$\frac{S}{N} = \left(\frac{\varepsilon T}{t_{\exp}} \frac{\Omega_{survey}}{\Omega_{FOV}} \frac{R}{\pi a}\right)^{1/2} \frac{\delta}{\sigma} \qquad \sigma = \sigma_0 \left(\frac{t_{\exp}}{t_{\exp,0}}\right)^{1/2} \left(\frac{D}{D_0}\right) 10^{0.2(V-V_0)}$$

$$V_{\text{lim}} = 5 \log \left[\left(\frac{\varepsilon T}{t_{\text{exp},0}} \frac{\Omega_{FOV}}{\Omega_{survey}} \frac{R}{\pi a} \right)^{1/2} \frac{D}{D_0} \frac{\delta}{\sigma} \left(\frac{S}{N} \right)^{-1} \right] + V_0$$

Magnitude Limits and Yields

SDSS Magnitude Limits and Yields

• SDSS-II

- Observation time = 37.5 days
- Telescope Diameter = 2.5m
- Efficiency = 0.5
- Field of View = 6.25 deg²
- Area Surveyed=300 deg²
- Magnitude limits
 - Sun-like stars = 15.6
 - M dwarfs = 20.2
- Total Yields for S/N=20
 - Sun-like stars = 6
 - M-dwarfs = **12**

Pan-STARRS Magnitude Limits and Yields

• Pan-STARRS (Medium-Deep)

- Observation time = 5 months
- Telescope Diameter = 1.8m
- Efficiency = 0.5
- Field of View = 7 deg²
- Area Surveyed=1200 deg²
- Magnitude limits
 - Sun-like stars = 14.99
 - M dwarfs = 19.61
- Total Yields for S/N=20
 - Sun-like stars = 19
 - M-dwarfs = **37**

Pan-STARRS Magnitude Limits and Yields

• Pan-STARRS (Wide??)

- Observation time = 5 months
- Telescope Diameter = 1.8m
- Efficiency = 0.5
- Field of View = 7 deg²
- Area Surveyed=12,000 deg²
- Magnitude limits
 - Sun-like stars = 12.5
 - M dwarfs = 17.1
- Total Yields for S/N=20
 - Sun-like stars = 48
 - M-dwarfs = 82

LSST Magnitude Limits and Yields

• LSST

- Observation time = 10 years
- Telescope Diameter = 6.5m
- Efficiency = 0.5
- Field of View = 9.6 deg²
- Area Surveyed=20,000 deg²
- Magnitude limits
 - Sun-like stars = 18.5
 - M dwarfs = 23.1

Total Yields for S/N=20

- Sun-like stars = **7700**

- M-dwarfs = 15500 (4000 to V~20)

A Worked Example(with Cullen Blake, Guillermo Torres, Josh Bloom)

SDSS-II Transit Search

SDSS-II M dwarfs

- 300 deg²
- Point sources
- *i-z* > 0.84
- *r* < 21.2 (5% precision)
- M4 and later
- r,i,z light curves for 19,000 M dwarfs
- 10-30 observations in each band
- At most a few points in transit
- Transit Search
 - Flux decreases of > 0.2 mag
 - All three bands
 - Jupiter radii companions for $R{<}0.2R_{\odot}$

Best Candidate

PAIRITEL Follow-Up

937 JHK measurements

(Blake et al. 2007)

LRIS Keck Spectra

Mass-Radius Constraints

Other DEB in SDSS-II

(Blake et al. 2007)

Planets?

Targets:

- •*i-z* > 0.37, *i* < 19
- •40,000 targets with R< 0.3 R_{\odot}
- •Depths > 10% for Jupiters

Planet Yield:

•21 HJ+VHJ

Follow-up:

- •K>30 km/s
- •Msin*i*>95M_J for P<3 days
- •IR spectroscopy?

Smaller Planets?

- •Depths > 1% for Neptunes
- •Calibrate SDDS to better than 1%?

The Coming Storm

An Embarrassment of Riches?

• LSST

- Sun-like stars = 7700
- M-dwarfs = 15500 (4000 to V~20)
- Calibrate photometry to ~0.1%?
- All fainter than V=16
- 10⁵-10⁶ false positives?
- Is there anything we can do with these planets?

Microlensing Planet Finder

- Monitor ~10⁸ MS stars
- 9 months/year, 4 years
- 15 minute sampling
- S/N~90 for 3 days
- ~30,000 Hot Jupiters
- S/N~P^{-1/3} → Thousands of planets out to P~2 years
- Single Transits to tens of AU
- All will have I>20!

Statistical Analysis of Transit Candidates?

SWEEPS experience (Sahu et al. 2006)

Statistical determination of the frequency of false positives
Also model of Brown (2003)

More needs to be done:

•What are the uncertainties in these models?
•Variations in the binary fraction with environment?
•Do Kozai-created hierarchical triples (Fabrycky & Tremaine, Wu et al) change the results?
•Can we determine f(M*,r,P) robustly from a statistical analysis?

Can we rule out false positives without RV (for shallow transits)?

•How useful are planet detections without planet mass?

