Statistics and Simulations of Transit Surveys

B. Scott Gaudi (Ohio State University)

Thanks to...

- Thomas Beatty
- Chris Burke
- Andrew Gould
- Gabriella Mallen-Ornelas
- Josh Pepper
- Frederic Pont
- Sara Seager
- Andrzej Udalski

Why Transit Surveys?

1. Find Planets!

2. Unusual/Extreme Populations

3. Statistics of Close-In Planets

Statistics of Transit Surveys

• Planning surveys \Leftrightarrow Planet yields

Predicting Planet Yields

Two approaches:

• Backward

$$\langle N \rangle = \sum_{k} P_{\text{planet,k}}(M, [\text{Fe/H}], P, r, ...) P_{\text{transit,k}}(R, P, i) P_{\text{detect,k}}(R, F, r, P...)$$

• Forward

$$\frac{d^{n}\langle N\rangle}{dMdRdPdrdld\Omega d...} = \frac{dn(l)}{dMdRdL} \frac{df}{dPdr} P_{\text{transit}}(R,P,i)P_{\text{detect}}(R,F,r,P...)l^{2}$$

• Hybrid: Forward constrained by # of stars

Backward Approach

 $\langle N \rangle = \sum P_{\text{planet,k}}(M, [\text{Fe/H}], P, r, ...) P_{\text{transit,k}}(R, P, i) P_{\text{detect,k}}(R, F, r, P...)$

probability probability probability of hosting a **planet will** planet will planet

transit be detected

Most Exact

- **Difficult to implement** •
 - Requires knowledge of stellar properties
 - Not widely applicable
- **Only robust for stellar systems**

Yields for Stellar Systems

General theory

Janes (1996), Gaudi (2000), von Braun et al. (2005), Pepper & Gaudi (2005,2006)

One Parameter - Mass

Yields for Field Surveys

- General theory Pepper, Gould & DePoy (2003)
- Unknown Properties
 - (distance, reddening)

Backward modeling hard

(Hartman et al., in prep)

Ingredients

Distribution of stellar properties

- Mass, radius, luminosity, metallicity dist.
- Variation along the line of sight

Distribution of planet properties

- Period, radius distribution, metallicity, correlations
- Dependence on mass?
- Transit probability
- Detection probability
 - Probability that a planet passes all cuts
 - Confirmed by high-precision RV follow-up

Detection Probability

Must account for all cuts consistently

- Algorithmic cuts (BLS: α , SDE)
 - Limb darkening?
 - Ingress/Egress?
- Number of transits
- By-eye selection
- Magnitude limit/RMS cut
- Color cut
- RV follow-up
- Saturation

Lessons I: Simple Estimates Fail

• Naïve estimate:

$\langle N \rangle \approx f P_{transit} N_{<9} \approx 10^{\circ} \times 10^{\circ} \times 10^{\circ} = 1$

Actual rates... one in 10⁴ or 10⁵

• Typical planet size

- Large star contamination Gould & Morgan 2003, Brown 2003
- S/N requirements
 - 1% not necessarily sufficient
 - Correlated errors & systematics
- Transit probability varies
- Multiple transits & aliasing
- Precision RV follow-up

• Typical planet size

Large star contamination

Gould & Morgan 2003, Brown 2003

- S/N requirements
 - 1% not necessarily sufficient
 - Correlated errors & systematics
- Transit probability varies
- Multiple transits & aliasing
- Precision RV follow-up

(Gould & Morgan 2003)

- Typical planet size
- Large star contamination

Gould & Morgan 2003, Brown 2003

- S/N requirements
 - 1% not necessarily sufficient
 - Correlated errors & systematics (Pont et al 2006)
- Transit probability varies
- Multiple transits & aliasing
- Precision RV follow-up

(Pont et al 2006)

- Typical planet size
- Large star contamination

Gould & Morgan 2003, Brown 2003

- S/N requirements
 - 1% not necessarily sufficient
 - Correlated errors & systematics
- Transit probability varies
- Multiple transits & aliasing
- Precision RV follow-up

$$P_{\text{transit}} \approx \frac{R}{a} \propto M^{-1/3} R P^{-2/3}$$

- Typical planet size
- Large star contamination Gould & Morgan 2003, Brown 2003
- S/N requirements
 - 1% not necessarily sufficient
 - Correlated errors & systematics
- Transit probability varies
- Multiple transits & aliasing
- Precision RV follow-up

(Gaudi et al 2003)

- Typical planet size
- Large star contamination Gould & Morgan 2003, Brown 2003
- S/N requirements
 - 1% not necessarily sufficient
 - Correlated errors & systematics
- Transit probability varies
- Multiple transits & aliasing
- Precision RV follow-up

(O'Donovan et al 2006)

 $\langle N \rangle \approx \frac{\Omega}{3} n P_{transit} l_{max}^3$

$$\frac{S}{N} \approx N^{1/2} \frac{\delta}{\sigma}$$

(white noise)

$$N \approx \frac{R}{\pi a} N_{total}$$

$$\sigma pprox N_{photons}^{-1/2} \propto L^{-1/2} l \delta pprox$$

$$\delta \approx \left(\frac{r}{R}\right)^2$$

$$\frac{S}{N} \propto R^{-3/2} M^{-1/6} L^{1/2} r^2 P^{-1/3} l^{-1}$$

 $\frac{S}{M} \propto R^{-3/2} M^{-1/6} L^{1/2} r^2 P^{-1/3} l^{-1}$ $R \propto M$, $L \propto M^{7/2}$ $\frac{S}{M} \propto M$ $(1/12)^2 P^{-1/3} l^{-1}$

At fixed distance, S/N nearly independent of mass!

(Gaudi et al. 2003, Gaudi 2005)

S/N-limited transit surveys have strong biases

 Favor short periods
 # of detections strong function of S/N
 Overwhelmingly favor large planets
 (Caudi et al. 2003, Caudi 2005, Port et al. 2006)

$$\langle N \rangle \propto P^{-5/3} r^6 \left(\frac{S}{N}\right)_{\min}^{-3}$$

Most ground-based transit surveys are subject to correlated (i.e. red) noise

 Measurements correlated on transit timescales

Fundamental limit to noise

•Changes the statistics

Relation between red and white noise

$$\left(\frac{S}{N}\right)_r \approx N_{tr}^{1/2} \frac{\delta}{\sigma_{red}}$$

$$\left(\frac{S}{N}\right)_{w} \approx N^{1/2} \frac{\delta}{\sigma}$$

$$\left(\frac{S}{N}\right)_{r} = \left(\frac{S}{N}\right)_{w} \left(\frac{\sigma}{\sigma_{r}}\right) \left(\frac{N}{N_{tr}}\right)^{-1/2} \approx \left(\frac{S}{N}\right)_{w} n_{k}^{-1/2}$$

Effective S/N considerably lower with correlated noise

(Pont et al.

$$\frac{S}{N} \approx N_{tr}^{1/2} \frac{\delta}{\sigma_{red}}$$
 (red noise)

 $N_{tr} \approx \frac{T}{P} f$

 $\sigma_{red} \approx \text{constant}$

 $\delta \approx \left(\frac{r}{R}\right)^2$

 $\frac{S}{N} \propto R^{-2} r^2 P^{-1/2}$

- **When correlated noise dominates:**
- •Effective S/N considerably lower
- Detectability doesn't depend on stellar brightness!
- Strong (inverse) dependence on stellar mass
- No volume effect Threshold statistics
 Stronger aliasing effects
- Changes the optimal observing strategy

Lessons IV: All Regimes

- Correlated noise
- Source noise
- Sky noise
 - often provides the fundamental limit
- Other noise sources – scintillation

(Hartman et al. 2006)

Future Considerations: Eccentricity

- Work by Chris Burke
- Eccentric orbits change detectability
 - Changes transit duration
 - Shorter near periastron, longer near apastron
 - Changes transit probability

Higher transit probability near periastron

Upper Limits:

- 47 Tuc
- Open Clusters
- Field
- OGLE
- Detailed analysis
 - HJ Frequency = 1/310
 - VHJ Frequency = 1/690
- Comparison with RV
 - metallicity bias

Gilliland et al. 2000 Weldrake et al. 2005

Upper Limits:

- 47 Tuc
- Open Clusters
- Field OGLE
- Detailed analysis
 - HJ Frequency = 1/310
 - VHJ Frequency = 1/690
- Comparison with RV
 - metallicity bias

PISCES - Mochejska et al. (2005, 2006) STEPSS - Burke et al. (2006)

Upper Limits:

- 47 Tuc
- Open Clusters
- Field

Hood et al. (2006) Bramich & Horne (2006)

OGLE

- Detailed analysis
 - HJ Frequency = 1/310
 - VHJ Frequency = 1/690
- Comparison with RV
 - metallicity bias

Upper Limits:

- 47 Tuc
- Open Clusters
- Field
- **OGLE (seasons 1+2)**
- Detailed analysis
 - Detailed forward model
 - Selection effects
- Comparison with RV
 - metallicity bias

Gould et al. (2006), Fressin et al. (2007)

OGLE & RV consistent Metallicity bias ⇒ generically expect fewer transiting planets

Planet radii from OGLE

Bloated planets are rare. Weak constraints on sub-Jupiter sized planets.

Increasing sophistication

For OGLE; consistent with Gould et al. General agreement with RV + planet models

Predictions

- Horne (2003), Brown (2003), Pepper & Gaudi (2005), Gillon et al (2005), Fressin et al (2007)
- Extended model (w/ Thomas Beatty, CfA)
 - Galactic structure
 - Signal-to-noise ratio detection criteria
 - Noise sources (source, sky, scintillation, saturation, red & white noise)
 - Magnitude limit(s)
 - Mass, radius, effective temperature distribution
 - Arbitrary bandpasses
 - Visibility/transit requirements
 - × False Positives
 - × Blending
 - × Binaries

Predictions: XO

Predicted XO Detections for V<12, S/N > 20, r=R

00 hrs	04 hrs	08 hrs	12 hrs	16 hrs	20 hrs	Total
0.45	0.47	0.45	0.37	0.42	0.51	2.67

Predictions: TrES

Predicted TrES Detections for R<13, S/N > 20, r=R₁

	And0	Cyg1	Cas0	Per1	UMa0	CrB0	Lyr1	And1	And2	Tau0	UMa1	Total	Total Red (S/N) _r >8
VHJs	0.30	0.33	0.29	0.27	0.14	0.15	0.28	0.22	0.18	0.21	0.13	2.53	1.46
HJs	0.31	0.31	0.29	0.28	0.14	0.17	0.27	0.19	0.11	0.16	0.14	2.35	1.00
Both	0.61	0.64	0.58	0.55	0.28	0.32	0.55	0.41	0.29	0.37	0.27	4.88	2.46

Predictions: S/N limit

	VHJ	HJ	Both
S/N>10	3.96	4.47	8.43
S/N>15	3.23	3.30	6.53
S/N>20	2.53	2.35	4.88
S/N>25	1.94	1.66	3.60
S/N>30	1.49	1.19	2.68

Predicted TrES Detections for R<13, r=R

Predictions: Space Surveys

- Kepler
 - HJ+VHJ ~ 54
 - Total # J ~ 80
 - Most fairly faint
 - TrES-2 likely only one with V<12
 - 50 Habitable Earths

• CoRoT

 May find as many or more Jupiters

Summary

- Interpretation and predictions require accurate simulations
- Naïve estimates fail.
- Strong selection effects.
- Correlated noise important
- OGLE surveys consistent with RV
- Current surveys require careful modelling
- Must include all selection cuts consistently
- XO & TrES predicted to have handfuls of detections