Michelson Summer Workshop 2007 NASA Ames 7/23/2007

Kaspar von Braun (Michelson Science Center / Caltech)

Outline:

- Numbers / Quantities
- Principal Goals and Inherent Challenges of Transit Surveys
- Target Selection
- Observing Strategy

Outline:

- Numbers / Quantities
- Principal Goals and Inherent Challenges of Transit Surveys
- Target Selection
- Observing Strategy

Close-in Extrasolar Giant Planets / Hot Jupiters:

- period: ~ few days ; orbital radius ~ 0.05 AU
- transit duration: ~ few hours (duty cycle: few %)
- chance of favorable system inclination: ~10%
- transit depth: ~1% to few %
- Solar neighborhood: I star in 150 with close-in extrasolar giant planet (Butler et al. 2000, Marcy et al. 2004)
- assume binary fraction is ~50%
- assume transit detection only possible around single stars

transiting planet should be observable around 1 star in 3000!

Close

- period: ~ few • transit durati chance of fav transit depth
- Solar neighbor giant planet (B assume binar
- assume trans

Close-in Extrasolar Giant Planets / Hot Jupiters:

- period: ~ few days ; orbital radius ~ 0.05 AU
- transit duration: ~ few hours (duty cycle: few %)
- chance of favorable system inclination: ~10%
- transit depth: ~1% to few %
- Solar neighborhood: I star in 150 with close-in extrasolar giant planet (Butler et al. 2000, Marcy et al. 2004)
- assume binary fraction is ~50%
- assume transit detection only possible around single stars

transiting planet should be observable around 1 star in 3000!

Close-in Extrasolar Giant Planets / Hot Jupiters:

- period: ~ few days ; orbital radius ~ 0.05 AU
- transit duration: ~ few hours (duty cycle: few %)
- chance of favorable system inclination: ~10%
- transit depth: ~1% to few %
- Solar neighborhood: I star in 150 with close-in extrasolar giant planet (Butler et al. 2000, Marcy et al. 2004)
- assume binary fraction is ~50%
- assume transit detection only possible around single stars

transiting planet should be observable around 1 star in 3000!

Status up to 2005

K. Horne (2005) http://star-www.stand.ac.uk/%7Ekdh1/ transits/table.html

Transit Search Programmes

Programme	D (cm)	focal ratio	W ^{0.5} (deg)	N _x (kpix)	N _y (kpix)	no. of CCDs	pixel (arcsec)	sky mag	star mag	d (pc)	stars (x10 ³)	planets /month
<u>1</u> PASS	2.5	2.0	127.25	2.0	2.0	15	57.75	6.8	9.4	83	18	6.3
<u>2</u> <u>WASP0</u>	6.4	2.8	8.84	2.0	2.0	1	15.54	9.6	11.8	246	2	0.8
<u>3 ASAS-3</u>	7.1	2.8	11.21	2.0	2.0	2	13.93	9.9	12.0	272	5	1.7
4 RAPTOR	7.0	1.2	55.32	2.0	2.0	8	34.38	7.9	11.1	179	33	11.7
<u>5</u> <u>TrES</u>	10.0	2.9	10.51	2.0	2.0	3	10.67	10.5	12.7	362	10	3.5
<u>6</u> <u>XO</u>	11.0	1.8	10.06	1.0	1.0	2	25.00	8.6	11.9	258	3	1.2
<u>7</u> <u>HATnet</u>	11.1	1.8	19.42	2.0	2.0	6	13.94	9.9	12.5	338	28	9.7
<u>8</u> <u>SWASP</u>	11.1	1.8	31.71	2.0	2.0	16	13.94	9.9	12.5	338	74	26.0
<u>9</u> <u>Vulcan</u>	12.0	2.5	7.04	4.0	4.0	1	6.19	11.6	13.4	497	12	4.1
<u>10 RAPTOR-F</u>	14.0	2.8	5.93	2.0	2.0	2	7.37	11.3	13.4	498	8	2.9
<u>11</u> <u>BEST</u>	19.5	2.7	3.01	2.0	2.0	1	5.29	12.0	14.2	668	5	1.8
<u>12 Vulcan-S</u>	20.3	1.5	6.94	4.0	4.0	1	6.10	11.7	14.1	642	24	8.5
<u>13 SSO/APT</u>	50.0	1.0	5.05	2.9	3.1	2	4.20	12.5	15.5	1103	65	22.8
<u>14 RATS</u>	67.0	3.0	1.31	2.0	2.0	1	2.30	13.8	16.4	1548	12	4.2
15 TeMPEST	76.0	3.0	0.77	2.0	2.0	1	1.35	15.0	17.1	1944	8	2.9
16 EXPLORE-OC	101.6	7.0	0.32	2.0	3.3	1	0.44	17.1	18.4	2881	5	1.6
<u>17 PISCES</u>	120.0	7.7	0.38	2.0	2.0	4	0.33	17.1	18.6	3045	8	2.7
<u>18 ASP</u>	130.0	13.5	0.17	2.0	2.0	1	0.30	17.1	18.7	3125	2	0.6
<u>19 OGLE-III</u>	130.0	9.2	0.59	2.0	4.0	8	0.26	17.1	18.7	3125	20	7.1
<u>20</u> <u>STEPSS</u>	240.0	0.0	0.41	4.0	2.0	8	0.18	17.1	19.5	3757	17	5.9
<u>21 INT</u>	250.0	3.0	0.60	2.0	4.0	4	0.37	17.1	19.5	3800	37	13.1
<u>22 ONC</u>	254.0	3.3	0.53	2.0	4.0	4	0.33	17.1	19.5	3817	30	10.5
23 EXPLORE-N	360.0	4.2	0.57	2.0	4.0	12	0.21	17.1	19.9	4196	46	16.2
24 EXPLORE-S	400.0	2.9	0.61	2.0	4.0	8	0.27	17.1	20.0	4313	58	20.1
Total number of planets/month:												186

Total number of planets/month:

 $W^{0.5}$ degrees is the square root of the field of view. Not all fields are square.

d parsecs is the distance at which a transit with $R = R_{Jup}$ and P = 4 days across a G2V star will be detected with a S/N of 10. star mag is the limiting magnitude for this event.

Vital statistics questionnaire

Keith's June 2002 Washington Conference preprint (.ps)

Updated: 2005.05.18

7

not listed: space-based surveys (HST, MOST, COROT)

Open Cluster Transit Searches

Purpose and Outline:

- Numbers / Quantities
- Principal Goals and Inherent Challenges of Transit Surveys
- Target Selection
- Observing Strategy

Transit Surveys: Principal Goals & Inherent Challenges

- Detect and characterize planetary systems.
- Provide statistics concerning planetary frequency / characteristics as function of astrophysical properties of surveyed sample / environment.
- Maximize number of stars monitored at sufficiently high relative photometric precision.
- Maximize probability of detecting observable transits.
- Eliminate false positives.
- Understand the sample.

Outline:

- Numbers / Quantities
- Principal Goals and Inherent Challenges of Transit Surveys
- Target Selection
- Observing Strategy

Transit Surveys -- Target Selection

based on:

- richness of observed target
- observability (hours per night, number of nights, cadence)
 - window functions (later in this talk)
- crowding (function of pix size)
 - Tim Brown's talk
- range in astrophysical properties (age, metallicity, environment...)
- distance / brightness versus cadence
- contamination / number of "good" stars

Transit Surveys -- Target Selection range in astrophysical properties

 clusters: need to target several clusters (EXPLORE/OC, UStAPS, PISCES, STEPSS, 47 Tuc studies, MONITOR, etc)

 field: get them automatically, but need auxiliary data (spectra)

Transit Surveys -- Target Selection distance / brightness versus cadence

Transit Surveys -- Target Selection distance / brightness versus <u>cadence</u>

Transit Surveys -- Target Selection number of "good" stars / contamination

17

Outline:

- Numbers / Quantities
- Principal Goals and Inherent Challenges of Transit Surveys
- Target Selection
- Observing Strategy

- Principal Challenges:
- false positives.
- noise sources.
- sampling.

Strategy:

- optimize cadence (eliminate false positives).
- red (RI) band (eliminate false positives).
- minimize noise.
 - pix-to-pix variation effects.
 - avoid saturation (of even a few pixels).
 - photon noise: spectrally or spatially broaden PSF.
 - avoid undersampling (for PSF fitting).
- optimize window function.

red (RI) band (eliminate false positives)

- sensitive to redder (smaller) stars
- dust extinction smaller
- Imb darkening considerations: eliminate false positives

Limb darkening at 3, 0.8, 0.55, 0.45 microns

• minimize noise

pix-to-pix variation effects
avoid saturation (of even a few pixels)

photon noise: spectrally or spatially broaden PSF.
avoid undersampling (for PSF fitting)

• minimize noise

- pix-to-pix variation effects
 avoid saturation (of even a few pixels)
- photon noise: spectrally or spatially broaden PSF.
 avoid undersampling (for PSF fitting)

• minimize noise

pix-to-pix variation effects

avoid saturation (of even a few pixels)

photon noise: <u>spectrally</u> or spatially broaden PSF.
avoid undersampling (for PSF fitting)

HST/STIS light curve of HD209458b

23

Brown et al. 2001

• minimize noise

- pix-to-pix variation effects
 avoid saturation (of even a few pixels)
- photon noise: spectrally or spatially broaden PSF.
 avoid undersampling (for PSF fitting)

HAT Survey PSF-Broadening Method

Bakos et al. 2004

optimize window function

 window function calculated very differently in literature, hard to compare.

- SNR (transit) = sqrt(N) * depth/rms
 - N: number of data points observed during transit
 - depth: depth of transit = f(Rstar, Rplanet, i)
 - rms = f(survey, brightness)
 - N = f(run length, cadence, transit duration, period)
- assume:
 - ► SNR >= 10.0
 - rms = 0.01 mag
 - $R_{star} = 1.0 R_{sun}, R_{planet} = 0.1 R_{sun} (depth = 0.01; i = 90 deg)$
 - ► N = 100

Transit Surveys -- Observing Strategy window function -- <u>length of observing run</u>

- P = I I0 days
- duty cycle 9% 2%
- night length = 8h
- cadence = 5 min

20 consecutive nights40 consecutive nights60 consecutive nights

Transit Surveys -- Observing Strategy window function -- <u>cadence</u>

- P = I IO days
- duty cycle 9% 2%
- night length = 8h
- 40 consec. nights

30 minutes 15 minutes 10 minutes 5 minutes

Transit Surveys -- Observing Strategy window function -- <u>night length</u>

- P = 1 10 days
 duty cycle 9% 2%
- cadence: 5 min
- 60 consec. nights

2 hours 4 hours 6 hours 8 hours 10 hours

Transit Surveys -- Observing Strategy window function -- transit duration

P = I - I0 days
cadence: 5 min
40 consec. nights
8 hours / night

I hour 2 hours 3 hours 4 hours 5 hours

Transit Surveys -- Observing Strategy window function -- total number of hours (160)

- P = 1 10 days
 duty cycle 9% 2%
- cadence: 5 min

80 nights; 2h / night 60 nights; 2.7h / night 40 nights; 4h / night 20 nights; 8h / night 7 "nights"; 23h / night

Transit Surveys: Principal Goals & Inherent Challenges

- Detect and characterize planetary systems.
- Provide statistics concerning planetary frequency / characteristics as function of astrophysical properties of surveyed sample / environment.
- Maximize number of stars monitored at sufficiently high relative photometric precision.
- Maximize probability of detecting observable transits.
- Eliminate false positives.
- Understand the sample.