Formation and Structure of Low-Density Exo-Neptunes

Leslie A. Rogers, Peter Bodenheimer, Jack J. Lissauer, & Sara Seager larogers@mit.edu, Massachusetts Institute of Technology, Cambridge MA, 02139

Motivating Question:

What are the minimum plausible masses of Neptune-size (2-6 R_{\oplus}) planets?

Planets with gas layers can get larger as you go to lower planet masses.

Main Results

Equilibrium Planet Models:

Neptune-size Kepler planet candidates could have low mass (a few Earth masses at T_{eq} =500K).

Core Nucleated Accretion Calculations:

Low mass (3-8 M_{\oplus}) Planets with substantial H/He envelopes can plausibly form by core nucleated accretion beyond the snow-line and migrate inward to T_{eq} ~500K with their envelopes intact.

Dissociative Outgassing of H₂:

Fe+H2O-> FeO+H2 Planets with outgassed H₂ envelopes typically have modeled radii less than

See also arXiv:1106.2807