Formation and Structure of Low-Density Exo-Neptunes Leslie A. Rogers, Peter Bodenheimer, Jack J. Lissauer, & Sara Seager larogers@mit.edu, Massachusetts Institute of Technology, Cambridge MA, 02139 ### Motivating Question: What are the minimum plausible masses of Neptune-size (2-6 R_{\oplus}) planets? Planets with gas layers can get larger as you go to lower planet masses. ## Main Results #### **Equilibrium Planet Models:** Neptune-size Kepler planet candidates could have low mass (a few Earth masses at T_{eq} =500K). #### **Core Nucleated Accretion Calculations:** Low mass (3-8 M_{\oplus}) Planets with substantial H/He envelopes can plausibly form by core nucleated accretion beyond the snow-line and migrate inward to T_{eq} ~500K with their envelopes intact. # **Dissociative Outgassing of H₂:** Fe+H2O-> FeO+H2 Planets with outgassed H₂ envelopes typically have modeled radii less than See also arXiv:1106.2807