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Discovery space circa 2010

< habitable zone for  G dwarfs



RV detections



Gliese 581g (Vogt, Butler, et al. 2010)



Gliese 581g (Vogt, Butler, et al. 2010)



Microlensing detection with Warsaw 1.3m telescope, Las Campanas - 2004



microlensing planets only



microlensing



Johnson et al. (2007): Doppler surveys

M dwarf-> 0.5



Gould et al. (2010): gravitational microlensing surveys



Laughlin et al. (2004) core accretion models
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Ida & Lin (2005)

fraction with RV
detectable Jupiters:
> 10 m/s, P < 4 yrs

<-- standard model



Kennedy & Kenyon (2008): varied disk surface density, mass, & lifetime



0.5 solar
mass star
with a 20
AU radius
disk after
215 yrs
(Boss 2006)



Clump formation by disk instability after 445 yrs in a
0.02 Msun disk orbiting a 0.1 Msun star (Boss 2006).

Jupiter-mass 
clump at 7 AU



Sumi et al. (2011): Jupiters beyond 10 AU ~1.8 as frequent as inside 10 AU



Marois et al. (2008, 2010): four exoplanets
M > 5-7 Mjup & distances of 14, 24, 38, 68 AU

A5 star, 1.5 MSun



Chambers 2006



Boss (2003) - 30 AU radius disk around a 1Msun protostar



Boss (2011): 0.1 solar mass star, 60 AU radius disk



Boss (2011): 0.5 solar mass star, 60 AU radius disk



Boss (2011)
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Kepler: MEASURED [L] VS. INTRINSIC [R] DISTRIBUTIONS

Correction for selection effects reduces the prominence of the coolest stars, 
resulting in a drop in frequency for K dwarfs and an enhanced frequency of 
Jupiter-size candidates in orbit around the hotter and more massive stars







Ida & Lin (2008): no disk bumps (left)  gas bump (middle)  gas/dust bumps (right)

C1~ dr/dt
parameter
for Type I
migration;
only solar
mass stars



Ida & Lin (2008): no disk bumps (left)  gas bump (middle)  gas/dust bumps (right)
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Ida & Lin (2008): no disk bumps (left)  gas bump (middle)  gas/dust bumps (right)
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Alibert, Mordasini, & Benz (2011)
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Exoplanet Population Synthesis Models

• The “planet desert” predicted by recent population synthesis models does not
exist: in reality this mass range is observed to be a “planet oasis”
• Models also predict a pile-up of planets at small orbits, which is not seen
• The models necessarily rely on a large number of free (or poorly constrained)
model parameters (e.g., assumed orbital migration rates, disk lifetimes)
• Prediction of a “planet desert” in particular appears to be caused by the rapid
inward orbital migration (Type I) assumed in these models and by the runaway
gas accretion of rocky/icy protoplanets, resulting in gas giant planet formation
rather than super-Earth and Neptune formation
• As a result, models based on the classic core accretion mechanism for
planetary system formation apparently require serious modifications to match
the observed planetary distributions for super-Earths and Neptunes
• Perhaps hybrid models need to be considered, with much shorter disk
lifetimes (e.g., < 1 Myr vs. ~ 5 Myr), minimizing Type I migration losses and
preventing the growth of super-Earths into gas giants, while the needed gas
giants are formed rapidly prior to disk dispersal by disk instability



Cieza et al. (2007) SST survey: ~ 65% of disks gone in < 1 Myr



Discovery space with latest discoveries addedDiscovery space with hot and warm super-Earths and their gas giant planet siblings

Mu Ara

55 Cnc
Gl 876

Gl 436

Gl 581 HD 69830

HD 181433: inner 7.5
Earth-mass and two
outer Jupiters
(Bouchy et al. 2009)

HD 47186: inner 22
Earth-mass and outer
Saturn (Bouchy et al.
2009)

~30% of solar-type
stars have super-
Earths (Mayor et al.
2009)



Discovery space with latest discoveries addedDiscovery space with planets around M dwarf stars highlighted

GJ 876

GJ 436

OGLE-2005-BLG-390

GJ 581

OGLE-2003-BLG-235
OGLE-2005-BLG-071

GJ 876

GJ 876

OGLE-2005-BLG-169

OGLE-2006-BLG-109b,c

GJ 317
GJ 849

GJ 176

cold super-Earths

MOA-2007-BLG-192

OGLE-2005-BLG-071

cold Jupiters



8 pc census (2007)



Internal  Coronagraph (e.g., TPF)



External Occulter (e.g., New Worlds Observer)



Planet Formation Theories and the Relevance
of Microlensing Observations: Conclusions

• Doppler surveys show that ~30% of solar-type stars have hot or warm super-Earths
(Mayor et al. 2009)

• Microlensing surveys imply that ~35% of M dwarfs have Jupiter-mass to  super-Earth-
mass planets (Gould et al. 2010)

• Microlensing probes preferentially lower mass stars than RV, and greater distances as
well, putting important new constraints on planet formation theories (Boss 2006)

• Population synthesis models based on core accretion have problems accounting for the
“planet oasis” and gas giants on wide or unbound orbits (Ida &Lin 2008)

• M dwarfs can host habitable worlds (Tarter et al. 2007)
• Microlensing can detect gas giants and cold super-Earths around typical M and K

dwarfs in the galaxy (Gould et al. 2010)
• Long-period gas giants are frequent siblings to shorter-period super-Earths and

habitable worlds (Lo Corto et al. 2010)
• Habitable Earths thus are expected to exist interior to the outer gas giants to be found

by microlensing surveys
• Similar, but nearby M dwarfs should then be targets for future space telescopes capable

of the direct detection of Earths


