Free-floating Planets -Jupiter-mass free-floating planets are common-

Takahiro Sumi (Osaka University) MOA collaboration OGLE collaboration Sumi et al. 2011, Nature, 473, 7347, 349-352

NASA/JPL-Caltech/R. Hurt

Free-floating planet

Planetary-mass objects that is orbiting about any host star called:

- Free-floating planet
- Rogue planet
- Orphan planet
- Interstellar planet

Can we call them "Planet"? --- still in debate

- If they formed around a host star, and scattered out from orbit, then we may call them a planet.
- However, others believe that the definition of 'planet' should depend on current observable state, and not origin
- They may form on their own (sub brown dwarf) through gas cloud collapse similar to star formation; in which case they would never have been planets. → "planetary-mass object"

Free-floating planetary-mass objects in young star forming region

Zapatero Osorio, et al. 2000

Orion

M~5-15 M_J

However, Large uncertainty inphotometric mass measurementtheir abundance

Oasa et al. 1999,2006

Size comparison

Gravitational Microlensing

◇If a lens is a star, elongation of images is an order of 100µarcsec.

Plastic lens

Single lens

Sensitivity of various methods

MOA (since 1995) (Microlensing Observation in Astrophysics) (New Zealand/Mt. John Observatory, Latitude: 44°S, Alt: 1029m)

New Zealand

MOA (until ~1500) (the world largest bird in NZ)

height:3.5m
weight:250kg
can not fly
Extinct 500 years ago (Maori ate them)

MOA-II 1.8m

Survey towards the Galactic Bulge

Probability:

 \diamond why ?

Microlensing : ~10⁻⁶ events/yr/star Planetary event : ~10⁻²

→ need Wide Field for Many stars

Time scale ~ 30days (M_{\odot}) ~ a few days (M_{Jup}) ~ hours (M_{\oplus})

need high cadence

Observational fields

Difference Image Analysis (DIA)

Observed

subtracted

10 events with timescale t_E<2days 474events in 2 years

timescale:

HJD - 2450000

M: lens mass M_J: Jupiter mass D_I: lens distance D_s: source distance v_t : transverse velocity

10 events with *t_E*< 2 days from 2006-2007 (events 1, 2)

10 events with *t_E*< 2 days from 2006-2007 (events 3, 4)

10 events with *t_E*< 2 days from 2006-2007 (events 5, 6)

10 events with *t_E*< 2 days from 2006-2007 (events 7, 8)

10 events with *t_E*< 2 days from 2006-2007 (events 9,10)

MOA data in black, confirmed by OGLE data in red

 A_{max} = 30 event is separated from host star by > 15 R_E

Binary Lens Background Rejection

- Both close (d < R_E) and wide (d > R_E) binary lens events can give rise to brief microlensing magnifications
- All short events can be fit by a wide binary model, because a wide binary approaches a single lens as d -> ∞
 - host stars must be at a distance > 3-15 R_E , depending on the event
 - high magnification events have the tightest limits
 - 2 wide binaries fail light curve shape cuts
- Close binaries have small external caustics that can also give short events
 - 1 such event passed all cuts but the light curve fit.
 - Close binary models have different, usually asymmetric, light curves
 - Close binary models can be rejected for all t_E < 2 day events, except for event 5
 - Since only 1 of 13 short events is a close binary, event 5 is probably a single lens event

Background: Short Binary Events

Background: Short Binary

CV Background Rejection

- Poor fit to microlensing event or unphysical source brightness
- Repeating
- 208 of 418 CV light curves in 2006-2007 data have a 2nd outburst in 2006-2010
 - Classified by eye from rejected events
 - 421 multiple outbursts fit to microlensing from multiple outburst events
 - All 421 failed to pass the cuts
- after analysis was complete, OGLE-III, II, I, and MACHO databases were checked
 - OGLE-III data confirms lens models for events 2, 3, 4, 6, 7, 8 and 9
 - OGLE-III 2002-2008 data shows no additional outburst back to 2002 for events 2, 3, 4, 5, 6, 7, 8, and 9
 - Events 3, 5, 6, and 8 show no outburst in 1990s MACHO

Background: CV

a CV gives a poor microlensing fit, often with low magnification and an unphysically bright source

6umi et al. 2011, Nature, 473, 7347, 349-352

Mass Function Models

- Stars >1 M_{\odot} have become stellar remnants
- Assume Salpeter-like slope ($\alpha = -2$) for initial >1 M_{\odot} stars
- Two choices at < 1 M_{\odot}
 - Broken power law
 - α = -2 for M > 0.7 M_{\odot}
 - α = -1.3 for 0.7 M_{\odot} > M > 0.08 M_{\odot}
 - α = -0.52 for 0.08 M_{\odot} > M > 0.01 M_{\odot}

– Chabrier log-normal

• $M_{\rm c} = 0.12 \ M_{\odot}, \ \sigma_{\rm c} = 0.76 \ dN/d \log M = \exp[(\log M - \log M_c)^2/(2\sigma_c^2)]$

Planetary δ-function in mass mass resolution limited by factor of 2-3 precision in

 t_E – mass relation

Detection Efficiency

Planetary Mass Function Parameters

Where are they?

and the galactic center

Far-infrared rendition of the Jovian-mass planet MOA-ip-10. It is either free-floating or extremely distant from its host star, and thousands of light-years away towards the galactic center. The planet's gravity creates Einstein arcs of a background star. Artwork by Jon Lomberg.

Unbound or distant planets?

 Microlensing data only sets a lower limit on the separation: no host stars within 10AU

HST follow-up can set tighter limits or detect host

8m telescope, Direct imaging limits (Lafreniere et al. 2007)
< 40% of stars have 1 Jupiter-mass planet at 10 AU < a < 500 AU

Isolated vs. Bound Planets

- (Isolated means no detectable host either free-floating or in a distant orbit > 7-45 AU depending on the event)
- Log-normal mass function implies 8 planets (plus 3 planetary mass brown dwarfs)
- \diamond Also, 5 planet+star events in the sample
 - \diamond So, a isolated:bound ratio of 8/5 = 1.6
- We can also compare to measurements of Cumming et al. (2008) and Gould et al. (2010) inside and outside the snowline
 - ♦ Implies 1.2 Saturn-Jupiter mass planets per star at 0.03-10 AU
 - \diamond So, isolated:bound ratio ~ 1.8/1.2 = 1.5

More isolated planets than bound (At least comparable)

Formation Scenarios:

- formed on their own through gas cloud collapse similar to star formation (sub brown dwarf)
 - Hard to form Jupiter-mass objects
 - Planetary-mass sub brown dwarf can explain only 1 or 2 short events.
 - Abrupt change in mass function at Jupiter-mass do not support this scenario.

2. formed around a host star, and scattered out from orbit

Hot Jupiters orbiting hot stars have high obliquities (Winn et al. 2010, Triaud et al. 2010)

→ evidence of gravitational interaction

Hot Jupiters are alone (Latham et al. 2011)

evidence of gravitational interaction

No desert for short-period super-earths (Howard et al. 2010)

planet-disk interactions are of secondary importance to planet-planet scattering

By Keck, Gmini, AO (**Marois et al.2008**) M_{host} =1.5Msun(Atyp) D~39pc 0.1 billion years old M_p =10, 10 and 7 M_J a=24, 37 and 67AU; (a_{Neptune}=30AU)

•half planets ejected after 10⁷yr

Free floating

Microlensing can find

The WFIRST Microlensing Exoplanet Survey:

Recommended by ASTRO 2010 Decadal report

WFIRST's Predicted Discoveries

>100 Earth-mass Planet、
 >25 habitable planets
 (0.5-10 M_{Earh}、0.72-2.0 AU)
 around FGK stars

Free-floating rocky planets may have liquid water, Stevenson (1999)

Ground-based confusion, space-based resolution

- Space-based imaging needed for high precision photometry of main sequence source stars (at low magnification) and lens star detection
- High Resolution + large field + 24hr duty cycle
- Space observations needed for sensitivity at a range of separations and mass determinations

- Free-floating planets are 1.8 times as common as main sequence stars (at least same order), and 1.5 times as common as bound planets.
- They may have formed in proto-planetary disks and subsequently scattered into unbound or very distant orbits
- They inform us not only the number of planets that survived in orbit, but also planets that formed earlier and scattered.
 \important for planetary formation theory
- WFIRST will detect >30 Earth-mass FFP

Kepler vs. WFIRST

Complete the census of planetary systems in the Galaxy

Simulated WFIRST Planetary Light Curves

Planets are revealed as short-duration deviations from the smooth, symmetric magnification of the source due to the primary star.

Detailed fitting to the photometry yields the parameters of the detected planets.

Final Mass Function Models

Table S3. Mass Function

#	${\rm Mass} \\ (M_{\odot})$	Function	parameter $(M \text{ and } \sigma \text{ are in } M_{\odot})$	$\begin{array}{c} \text{Fraction} \\ (N_*) \end{array}$
1	$40.0 \le M$	Gaussian	Black hole $(M_{\rm r} = 5, \sigma_{\rm r} = 1)$	0.0031
	$8.00 \le M \le 40.0$	Gaussian	Neutron star ($M_{\rm r} = 1.35, \sigma_{\rm r} = 0.04$)	0.021
	$1.00 \le M \le 8.00$	Gaussian	White dwarf $(M_{\rm r} = 0.6, \sigma_{\rm r} = 0.16)$	0.18
	$0.70 \le M \le 1.00$	Power-law	$\alpha_1 = 2.0$	1.0
	$0.08 \le M \le 0.70$	Power-law	$\alpha_2 = 1.3$	
	$0.01 \le M \le 0.08$	Power-law*	$\alpha_3 = 0.48^{+0.29}_{-0.37} \text{ w/o PL}$	$0.73_{-0.19}^{+0.22}$
	$0.01 \le M \le 0.08$	Power-law**	$\alpha_3 = 0.50^{+0.36}_{-0.60} \text{ w/ PL}$	$0.74_{-0.27}^{+0.30}$
	$M = M_{\rm PL}$	δ -function**	$M_{\rm PL} = 1.1^{+1.2}_{-0.6} \times 10^{-3}, \Phi_{\rm PL} = 0.49^{+0.13}_{-0.13}$	$1.9^{+1.3}_{-0.8}$
2	$40.0 \le M$	Gaussian	Black hole $(M_{\rm r} = 5, \sigma_{\rm r} = 1)$	0.0031
	$8.00 \le M \le 40.0$	Gaussian	Neutron star ($M_{\rm r} = 1.35, \sigma_{\rm r} = 0.04$)	0.021
	$1.00 \le M \le 8.00$	Gaussian	White dwarf $(M_{\rm r} = 0.6, \sigma_{\rm r} = 0.16)$	0.18
	$0.08 \le M \le 1.00$	Log-normal*	$M_{\rm c} = 0.12^{+0.03}_{-0.03}, \sigma_{\rm c} = 0.76^{+0.27}_{-0.16}$	1.0
	$0.01 \le M \le 0.08$	Log-normal*	$M_{\rm c} = 0.12^{+0.03}_{-0.03}, \sigma_{\rm c} = 0.76^{+0.27}_{-0.16}$	$0.70^{+0.19}_{-0.30}$
	$0.00 \le M \le 0.01$	$Log-normal^*$	$M_{\rm c} = 0.12^{+0.03}_{-0.03}, \sigma_{\rm c} = 0.76^{+0.27}_{-0.16}$	$0.17_{-0.15}^{+0.24}$
	$M = M_{\rm PL}$	δ -function***	$M_{\rm PL} = 0.83^{+0.96}_{-0.51} \times 10^{-3}, \Phi_{\rm PL} = 0.46^{+0.17}_{-0.15}$	$1.8^{+1.7}_{-0.8}$
3	$40.0 \le M$	Gaussian	Black hole $(M_{\rm r} = 5, \sigma_{\rm r} = 1)$	0.00060
	$8.00 \le M \le 40.0$	Gaussian	Neutron star $(M_{\rm r} = 1.35, \sigma_{\rm r} = 0.04)$	0.0061
	$1.00 \le M \le 8.00$	Gaussian	White dwarf $(M_{\rm r} = 0.6, \sigma_{\rm r} = 0.16)$	0.097
	$0.50 \le M \le 1.00$	Power-law	$\alpha_1 = 2.3$	1.0
	$0.075 \le M \le 0.50$	Power-law	$\alpha_2 = 1.3$	
	$0.01 \le M \le 0.075$	Power-law	$\alpha_3 = 0.3, R_{\text{HBL}} = 0.3$	0.19
	$M = M_{\rm PL}$	δ -function	$M_{\rm PL} = 1.9^{+1.4}_{-0.9} \times 10^{-3}, \Phi_{\rm PL} = 0.50^{+0.11}_{-0.10}$	$1.3_{-0.4}^{+0.7}$
4	$0.08 \le M$		same as model (1)	
	$0.01 \le M \le 0.08$	Power-law ^{**}	$\alpha_3 = 0.49^{+0.24}_{-0.27} \text{ w/ PL}$	$0.73_{-0.15}^{+0.17}$
	$10^{-5} \leq M \leq 0.01$	Power-law ^{**}	$\alpha_{\rm PL} = 1.3^{+0.3}_{-0.4} \text{ w/ PL}$	$5.5^{+18.1}_{-4.3}$

Mass-function

Efficiency corrected t_F distribution

 t_{E} (day)

Definition of Planet (IAU2006)

- A "planet" is a celestial body that: (a) is in orbit around the Sun, (b) has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape, and (c) has cleared the neighborhood around its orbit.
- 2. A "dwarf planet" is a celestial body that: (a) is in orbit around the Sun, (b) has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape, (c) has not cleared the neighbourhood around its orbit, and (d) is not a satellite.
- 3. All other objects except satellites orbiting the Sun shall be referred to collectively as "Small Solar System bodies".