MCMC and Parameter Estimation

- Sampling
- MCMC
- Parameter estimation
- Transitional probability
- Jacobian and priors
- How many points we need

Sampling

Sampling

Monte Carlo Markov chain

(Metropolis-Hastings algorithm)

An algorithm to sample from the probability distribution when you do not know it!
(you only know how to compare two points in the space)

Algorithm

```
point=initial guess
loop
    trial_point = point + some_random_jump
    ratio = p(trial_point)/p(point)
    if ratio > a_random_number(0 to 1) then:
        point=trial_point (accept trial point)
    else:
        (reject trial point, use the old one)
    chain.append(point)
end loop
(now you have a chain)
```


Parameter estimation: Histogram

most likely solution

Correlations

Density of points

Transitional probability

- This is the part: some_random_jump in the code
- Usually we use multidimensional gaussian

Correlations

Burning

- In the initial part of MCMC we change transitional probability (trying to find a good correlation matrix and step sizes)
- (After a while) We fix it and start to collect chain links

Jacobians and priors

Distance to the lens

convenient parameterization for fitting, but...

Good prior

Good prior

prior modifies solution, but not overwhelms it

Over-constraining prior

distribution from MCMC

Over-constraining prior

How many points we need

How many points we need

Dong et al. 2007, 664, 862 gives this approximate formula:

$$
N=2^{k / 2} \Gamma\left(\frac{k}{2}\right) e^{1 / 2}
$$

The End

- end for now, but workshop is going on

