Theory of Microlensing and Planetary Microlensing: Basic Concepts

Shude Mao

National Astronomical Observatories of China \&
University of Manchester

2011 Sagan Exoplanet Summer Workshop, 25/07/2011

Outline

- What is microlensing?
- Lens equation, images, and magnifications
- Binary lens equations
- Critical curves, caustics and planetary microlensing
- Summary
- Suggested readings

What is Galactic microlensing?

Image credit: NASA/ESA
Image separation is too small to resolve, we observe magnification effects.

Light curve is symmetric, achromatic \& non-repeating (Paczynski 1986)
Microlensing can be used to

- Discover extrasolar planets (~ 15)
- Study MW structure, stellar mass black holes, ...

Deflection angle: impulse approximation

 m, VM
$|\overrightarrow{\hat{\alpha}}| \approx \frac{m V_{\perp}}{m V}=\frac{F_{\perp} \Delta t}{m V}=\frac{\left(G M m / \xi^{2}\right)(2 \xi / V)}{m V}=\frac{2 G M}{V^{2} \xi}$
In general relativity, $\left|\begin{array}{l}\overrightarrow{\hat{\alpha}} \\ \mid\end{array}\right|=\frac{2 G M}{c^{2} \xi} \times 2$

Lens equation

$$
\vec{\eta}+\boldsymbol{D}_{d s} \overrightarrow{\hat{\alpha}}=\frac{\boldsymbol{D}_{s}}{\boldsymbol{D}_{\boldsymbol{d}}} \overrightarrow{\boldsymbol{\xi}},|\overrightarrow{\hat{\alpha}}|=\frac{4 \boldsymbol{G} \boldsymbol{M}}{\boldsymbol{c}^{2} \boldsymbol{\xi}} \xrightarrow{\stackrel{\mathrm{D}_{\mathrm{s}}}{\longrightarrow}} \frac{\vec{\eta}}{\boldsymbol{D}_{s}}+\frac{\boldsymbol{D}_{d s}}{\boldsymbol{D}_{s}} \stackrel{\vec{\alpha}}{\hat{\alpha}}=\frac{\vec{\xi}}{\boldsymbol{D}_{\boldsymbol{d}}}
$$

Single point lens equation

$$
\begin{aligned}
\vec{\beta}+\vec{\alpha}=\vec{\theta}, & \vec{\alpha}=\frac{4 G M}{c^{2} D_{d} \theta} \frac{D_{d s}}{D_{s}} \frac{\vec{\theta}}{\theta}=\frac{\theta_{E}^{2}}{\theta} \frac{\vec{\theta}}{\theta} \\
\vec{\beta} & =\vec{\theta}-\frac{\theta_{E}^{2}}{\theta} \frac{\vec{\theta}}{\theta}
\end{aligned}
$$

Setting the angular Einstein radius to unity, we have

$$
\beta=\theta-\frac{1}{\theta}
$$

Lens images

Lens equation: $\beta=\theta-\frac{1}{\theta}$

$$
\text { If } \beta=0 \text {, Solution: } \theta= \pm 1
$$

Einstein Ring

Source

Plane of Sky

Lens images

Lens equation: $\beta=\theta-\frac{1}{\theta}$
If $\beta \neq 0, \quad$ Solutions: $\theta_{ \pm}=\frac{\beta \pm \sqrt{\beta^{2}+4}}{2}$

Lens images

Negative Parity
 Positive Parity

Lens mapping

- Lens equation $\overrightarrow{\boldsymbol{\beta}}=\overrightarrow{\boldsymbol{\theta}}-\overrightarrow{\boldsymbol{\alpha}}(\overrightarrow{\boldsymbol{\theta}})$ is a 2 D mapping between the source plane to the image plane

$$
\overrightarrow{\boldsymbol{\beta}} \rightarrow \overrightarrow{\boldsymbol{\theta}}
$$

- The mapping may not be unique (multiple images)
- Gravitational lensing conserves surface brightness
- Magnification is just the ratio of the image area to the source area
- In general, $\quad \mu=\operatorname{det}\left(\frac{\partial^{2} \vec{\theta}}{\partial \vec{\beta}^{2}}\right)=J^{-1}, J=\operatorname{det}\left(\frac{\partial^{2} \vec{\beta}}{\partial \vec{\theta}^{2}}\right)$

Single lens magnification

- Magnification

$$
\mu=\frac{\theta \Delta \Phi d \theta}{\beta \Delta \Phi d \beta}=\frac{\theta}{\beta} \frac{d \theta}{d \beta}
$$

$$
\left|\mu_{+}\right|-\left|\mu_{-}\right|=1 \quad\left(\mu_{+}>0, \mu_{-}>0\right)
$$

$$
\mu_{\text {total }}=\left|\mu_{+}\right|+\left|\mu_{-}\right|=\left(\beta^{2}+2\right) /\left(\beta\left(\beta^{2}+4\right)^{1 / 2}\right)
$$

critical curves and caustics: point lens

- Caustics: point source positions with ∞ magnifications
- Their images form critical curves

Order of magnitude

For microlensing in the Milky Way, distances \sim few kpc

- Angular scale: $\theta_{\mathrm{E}}=\left(\frac{4 \boldsymbol{G M}}{\boldsymbol{c}^{2}} \frac{\boldsymbol{D}_{d s}}{\boldsymbol{D}_{d} \boldsymbol{D}_{s}}\right)^{1 / 2} \sim 0.5 \mathrm{mas}$
- Einstein radius $r_{E}=D_{d} \theta_{\mathrm{E}}=2.2 \mathrm{AU}\left(\frac{\boldsymbol{M}}{0.3 \mathrm{M}_{0}}\right)^{1 / 2}\left(\frac{\boldsymbol{D}}{2 \mathrm{kpc}}\right)^{1 / 2}, \boldsymbol{D}=\frac{\boldsymbol{D}_{d} \boldsymbol{D}_{d s}}{\boldsymbol{D}_{s}}$
- Timescale: $t_{E}=\frac{r_{E}}{V_{t}}=21$ day $\left(\frac{M}{0.3 M_{.}}\right)^{1 / 2}\left(\frac{D}{2 \mathbf{k p c}}\right)^{1 / 2}\left(\frac{V_{t}}{200 \mathbf{k m ~ s}^{-1}}\right)^{-1}$
\rightarrow Degeneracy! Can be partially or completely remove for exotic events!

Single lens equation in complex

Normalised lens equation: $\overrightarrow{\boldsymbol{\beta}}=\overrightarrow{\boldsymbol{\theta}}-\frac{1}{\boldsymbol{\theta}} \frac{\vec{\theta}}{\boldsymbol{\theta}}$
In two dimensions, we write $\overrightarrow{\boldsymbol{\beta}}=\left(x_{s}, y_{s}\right), \overrightarrow{\boldsymbol{\theta}}=(x, y)$

$$
\begin{aligned}
& x_{s}=x-\frac{x}{x^{2}+y^{2}}, \\
& y_{s}=y-\frac{y}{x^{2}+y^{2}}, \quad \times i
\end{aligned}
$$

In complex notation

$$
z_{s}=z-\frac{z}{z \bar{z}}=z-\frac{1}{\bar{z}}, \quad z_{s}=x_{s}+y_{s} i, \quad z=x+y i
$$

Binary lens equations

Single lens equation:

$$
z_{s}=z-\frac{z}{z \bar{z}}=z-\frac{1}{\bar{z}}, \quad(\mathrm{~m}=1, \text { lens at origin })
$$

This can be easily generalised to binary lenses:

$$
\mathbf{z}_{\mathrm{s}}=z-\frac{\boldsymbol{m}_{1}}{\bar{z}-\bar{z}_{1}}-\frac{\boldsymbol{m}_{2}}{\bar{z}-\bar{z}_{2}}, \quad \boldsymbol{m}_{1}+\boldsymbol{m}_{2}=1
$$

Taking the conjugate:

$$
\overline{\mathrm{z}}_{\mathrm{s}}=\bar{z}-\frac{\boldsymbol{m}_{1}}{z-z_{1}}-\frac{\boldsymbol{m}_{2}}{z-z_{2}} .
$$

- We obtain zbar and substitute it back into the original equation, which results in a $5^{\text {th }}$ order complex polynomial equation.
- This can be easily solved to find 3 or 5 image positions.

Binary lens magnification

Magnification: $\quad \boldsymbol{\mu}=\boldsymbol{J}^{-1}$
$J=\operatorname{det}\left(\frac{\partial\left(x_{s}, y_{s}\right)}{\partial(x, y)}\right)=\operatorname{det}\left(\frac{\partial\left(z_{s}, \bar{z}_{s}\right)}{\partial(z, \bar{z})}\right)$
$=1-\left|\frac{m_{1}}{\left(z-z_{1}\right)^{2}}+\frac{m_{2}}{\left(z-z_{2}\right)^{2}}\right|^{2}$

- Critical curves $(\mathrm{J}=0, \mu=\infty)$ and caustics can then be derived.

Planetary caustics

(Erdl \& Schneider 1993)

Principles of binary and exoplanet lensing

Fig. 1.-Geometry of microlensing by a binary, as seen in the sky. The primary star of i M_{e} is located at the center of the figure, and the secondary of $0.1 M_{0}$ or $0.001 M_{\circ}$ is located on the right, on the Einstein ring of the primary. The radius of the ring is 1.0 mas for a source located at a distance of 8 kpc and the lens at 4 kpc . The two complicated shapes around the primary are

Ūー щจー

t / t_{0}
$\mathrm{q}=0.1$

Properties of planetary microlensing

- Rate and deviation duration scale roughly $\sim(\text { mass ratio) })^{1 / 2}$
- Planetary deviation lasts for days for $\mathbf{1} \mathbf{M}_{\mathrm{J}}$ planets, but hours for $\mathbf{1 M}_{\oplus}$ planet
- Deviation amplitude can be high even for $1 \mathrm{M}_{\oplus}$ planet
- Microlensing has sensitivity to
- low-mass planets between -0.6-1.6 Einstein radii (resonance zone)
- free-floating planets (seen as single events lasting hours to days)
- multiple planets
- Complementary to other methods

Summary

- Gravitational microlensing is "simple", based on GR.
- We have derived
- the lens equations, images, and magnifications
- binary lens equation in complex notations
- equations of critical curves and caustics.
- Basic principles of extrasolar microlensing
- With upgraded/new ground-based (\& space) experiments, a particularly exciting decade is ahead!

Suggested reading

- General reviews on galactic microlensing:
- Mao, S., 2008, "Introduction to microlensing", in Proceedings of the Manchester Microlensing Conference, Edited by E. Kerins, S. Mao, N. Rattenbury, L. Wyzykowski (with exercises!) online at http://pos.sissa.it//archive/conferences/054/002/GMC8_002.pdf
- This lecture is a simplified version of the ones I gave at a workshop in Italy http://www.jb.man.ac.uk/-smao/lecture1.pdf, http://www.jb.man.ac.uk/-smao/lecture2.pdf, http://www.jb.man.ac.uk/-smao/lecture3.pdf
- Gould, A., 2008, "Recent Developments in Gravitational Microlensing", presented at "The Variable Universe: A Celebration of Bohdan Paczynski", 29 Sept 2007 online at http://uk.arxiv.org/abs/0803.4324
- Paczyński, B., 1996, "Gravitational Microlensing in the Local Group", Annual Review of Astronomy and Astrophysics, Vol. 34, p419 online at http://ariournals.annualreviews.org/doi/abs/10.1146/annurev.astro. 34.1.419

