
ulens mcmc Manual
(version 0.1, Jul 2011)

Introduction
This software aims to help with the fitting of the microlensing model to an observed light curves.
It has two components, one is the single lens and other is a binary lens fitting program.
There are 3 directories in the package:

● single_lens_mcmc
● binary_lens_mcmc
● common_files_mcmc

Both components share most of the code, this can be found in the common_files_mcmc
directory. The single lens magnification calculation and parametrization are in the
single_lens_mcmc, the binary lens parametrization and magnification calculations are in
binary_lens_mcmc, respectively.
Both codes use their own set of configuration files prepared specifically for a given problem.
These configuration files can be found in the input subdirectories. However there are some
configuration files that are the same and can be copied from one code to another.

The code uses MCMC(Monte Carlo Markov chain)-like algorithm to find the solution and an
MCMC algorithm to refine solution and find parameter uncertainties and correlations between
them. The standard downhill methods are faster in finding best-fit solutions, however are
much more prone to be stuck in the local minimum. Additionally, in the MCMC, by assigning
a higher “temperature” to a chain, we can probe larger part of the parameter space and avoid
being trapped by the local minima even better. The “MCMC-down” algorithm uses transitional
probabilities that are constantly changing and are adopting to a local shape of the parameter
space. The correlations between parameters are expressed in the form of a correlation matrix.
The square roots of variances of the parameters (sigmas) are also used as characteristic
scales.

Working with the code
Both directories, for single or binary code, have 4 essential subdirectories:

● input
● output
● plot
● code_*

There is also an exemplary directory called data, however in principal data can be stored in any
place, since one can specify in a configuration file where to look for data files.

The input directory contains all configuration files. The output contains files that are generated
by the program that indicate the current status of the program as well as the results of the run.
The plot directory holds the most recent solution during the run and one can generate plots with
both the corresponding model and the data using the scripts provided in this directory to take
a “snapshot” of the run.

In order to start a new fitting process or to start work with a new event, just copy one of the
directories single_lens_mcmc or binary_lens_mcmc to create a new directory. For example with
this command:

● cp -r binary_lens_mcmc OB110935_fit1
For each new set of configuration files, one can just copy the directory once more in order not to
lose the previous solutions, plots and configurations. If you do not want to copy the data many
times (which is recommended), just move the data directory out of binary_lens_mcmc, and
adjust the first line of the file: binary_lens_mcmc/input/data.ctrl to specify the location of the data
files.
If you do not want to copy any code files each time you start a new fit (which is recommended
too), just make a symbolic link to the code directory instead of copying it. For example:

● mkdir OB110935_fit1
● cd OB110935_fit1
● cp -r ../binary_lens_mcmc/input .
● cp -r ../binary_lens_mcmc/output .
● cp -r ../binary_lens_mcmc/plot .
● cp ../binary_lens_mcmc/Makefile ../binary_lens_mcmc/run .
● ln -s ../binary_lens_mcmc/code_binary_lens code_binary_lens

Do this just once, later you can simply copy the whole directory like this:
● cp -r OB110935_fit1 OB110935_fit2

And this will copy a symbolic link to a code instead of a code itself together with the whole
directory.

Every new run you should edit the files in the input directory to specify what code should do and
how. There is usually no need to modify the code itself.

Cleaning previous runs
After creating a new directory for a new microlensing event, usually it is a good idea to run:

● make distclean
command, this will remove all the previous configuration files made by you, all compiled codes
and all plots of the previous models. If you would like to start a new fitting process for the same
event you have copied the base directory from, run:

● make clean
this will remove only the results of the previous runs, but preserve the configuration files located
in input directory.

Compiling the code
The easiest way to compile the code is to run:

● make
in the code_* directory or one level above, in binary_lens_mcmc, single_lens_mcmc or the
directory you have created, for example: OB110935_fit1. We will call this directory the base
directory from now on.
You can run the code by writing:

./run - in the base directory, or

./binary_lens_mcmc or ./single_lens_mcmc in the code_* directory
There is no difference. Use command pwd to see where you are or command ls to see what
files are in the current directory.

Configuration
All configuration files have extensive comments inside. The comments start with # character
and are omitted by the program while reading the configuration file. The content of the all
configuration files with full comments is attached at the end of this document. Below we mention
briefly what is the role of each file.

If you delete the comments from a configuration file you can always find them in the
corresponding file with an *.info extension. For example file input/data.ctrl has a corresponding
file input/data.ctrl.info with some exemplary configurations and full set of comments inside.
These files are not used by the program, they are only for user’s information. The input directory
contains the following files:

● input/data.ctrl - contains information about all data sets: file name that contains the light
curve, observatory name, error rescaling and limb darkening coefficients, as well as a
bad data file - file that contains Julian dates of the observations that should not be taken
info account in the fitting.

● input/event.ctrl - specifies the event name, its equatorial coordinates (RA and Dec) and
a t0,par parameter used as a reference point in the definition of t0, u0, parallax (and orbital
motion parameters). The coordinates are not used in the modeling without parallax.

● input/mcmc.init - initial values of all fit parameters, together with the limits they are
allowed to vary in and initial step sizes for the Gaussian transitional probability in the
MCMC. Step sizes are not used if the correlation matrix is provided and READ_CORR
field in mcmc.ctrl is 1.

● input/mcmc.ctrl - configuration file for the MCMC process; how long the burning stage
lasts, whether the initial correlation matrix shall be read form a file or step sizes from
mcmc.init be used, what should be the temperature of the chain, how many stable points
on an MCMC link we require program to gather, etc.

● input/modeldat.ctrl - here the time span and cadence of the model light curve is defined.
This is used only for plotting the current model (every few minutes) and has no impact
on the actual calculations.

● input/corr.matrix - correlation matrix used to generate initial transitional probability for the
MCMC

● input/corr.sigmas - initial step sizes in each parameter corresponding to the correlation
matrix

Parametrization
There are two sets of parameters: “fit” parameters and “alternative” parameters (parameters

specified by the user). The fit parameters are the ones that fully describes and specifies the
mode and they are used in an MCMC process. The alternative parameters are the ones the
user would like to inspect in the output file in addition to the fit parameters. For example, even if
you would like to fit the single lens using teff, it is also very useful to have tE and u0 provided as
an output.
One example of single lens parametrization could be:

● t0-t0,par - time of the closest approach to the lens relative to some chosen time
● teff - effective time, product of u0 and tE (in days)
● tE - Einstein time (in days)
● t* - source radius crossing time (in days)
● πE,N - north component of the parallax
● πE,E - east component of the parallax

and then the corresponding alternative parametrization could be:
● t0 - time of the closest approach of the lens to the line of sight toward the source
● u0 - impact parameter, i.e., distance of the closest approach (in θE)
● tE - Einstein time (in days)
● ρ - source radius (in θE)
● πE - magnitude of the parallax
● φπ - angle of the relative lens-source motion in a geocentric frame (in degrees)

Changing the parametrization is straightforward to do.

Modifying the parametrization
If you need or want to change the fit parametrization just edit the file parametrization.f90 in the
code directory. Remember that it could be useful to copy the whole code directory to a new
location before doing this in order not to override the defaults. If you are using a symbolic link to
a code directory, for example:

● ls -l OB110935_fit1, gives:
● code_binary_lens -> ../binary_lens_mcmc/code_binary_lens

you can delete this link, and copy the code directory in a whole.

There is an array of the names of the parameters: par_names in the parametrization.f90. These
names are used to identify the parameters in the configuration file: input/mcmc.init. And the
order in which parameters appear in this list is the internal order used by other routines in the
parametrization.f90 file. Array called par_fmt hold formats in which the fit parameters are printed
out - this controls length of each record, number of decimal places and notation (scientific or
engineering). The family of functions called: get_*(params) is used to translate your set of
parameters info model description used by magnification and χ2 calculation routines.

If you would like to change fit parametrization do this:

● edit array par_names
● modify array par_fmt accordingly
● change each of the get_*(params) subroutines to properly translate your new set of

parameters. There routines are: get_u0, get_tE, get_rho, get_piEN, get_t0, etc.

You can introduce more complex parameters like lens orbital motion (in the case of binary lens)
by simply adding new elements to mentioned arrays, increasing value of the variable nparm,
writing additional get_*(params) routine and modifying the get_pos(x,y,t,params) subroutine
to use new parameters. Modify the alternative parameters accordingly. All this in a single file:
parametrization.f90

Modifying alternative parameters
The alternative parameters are meant to provide additional information to the output of a
program. This can be different projection of the parameter space or just a different units. You
decide.
To modify alternative parameters to your needs just edit the subroutine convert_parm_alt in the
parametrization.f90 file in the code directory. This subroutine translates all model parameters
to your set of alternative parameters, setups their names and output formats. See the code for
more details.

Binary-lens specific configuration
Calculation of the finite source magnification for binary-lens is very time consuming. This is
the reason we introduced the input/fs.ctrl file. This file informs the program in which section of
the light curve one should use the finite source calculations. The format of the file is simple:
every line defines one region in which the finite source calculation should be performed; the
region is defined by 2 numbers meaning the start and end time of the region in Julian days. The
optional, third, number is an integer flag saying what type of finite source calculation should be
performed: stokes’ method, inverse ray-shooting, map, hexadecapole approximation, etc. See
the get_mu() routine in getmu.f90 to see which magnification methods have been implemented
at this moment.

Results

Chains
The results are gathered in output directory, with additional information and visualization in plot
directory.
Ideally, the main result file is output/chain.stable which contains a few thousands of points
(links) in the vicinity of the best-fit model. These points can be used to evaluate the best-fit
solution given the data, and to estimate uncertainties as well as correlations between different
parameters. The accompanying files are:

● output/chain.best - current best link, i.e., the one with the lowest χ2

● output/chain.current - while program is running, this is the current point being calculated
● output/chain.burn - all links from the beginning of the program run before the chain is

considered stable. The transitional probabilities varies from link to link in the burning
stage, hence these link cannot be used for statistical analysis.

● output/chain.stable - all links after the chain is considered stable. These can be used for
statistical studies since the transitional probabilities is kept fixed during this stage.

Correlations and step sizes
Correlation matrix and parameter variances are calculated continuously throughout the program
activity based on a subset of most recent points. (Variances are kept in the form of sigmas,
i.e. square roots of variances). This information is stored in an output file every time a new
correlation matrix is calculated, additionally there are several other files in output directory which
hold information on previously calculated correlations:

● output/corr.matrix.initial and output/corr.sigmas.initial - these file holds the starting
values.

● output/corr.matrix.used and output/corr.sigmas.used - these values are the ones that
had been used for the stable phase of the MCMC. They are evaluated at the beginning
of the stable phase from a longer than usual subset of recent points.

● output/corr.matrix and output/corr.sigmas - when the program is running, these are the
most recently calculates values. At the end of the program, the correlations and sigmas
evaluated from the very end of the chain are written into these files.

Status
The current status of the program can be found in output/status file. The error.log and debug.log
holds some additional information. For example every time the program stops because of error,
the full description of problem is given in output/error.log.

Light curve, model and trajectory plots
The current solution is printed in the form of light curves and model curves every few minutes to
plot directory. These are the files:
plot/plot.* - files with the names of plot.0, plot.1, plot.2, etc. contains all light curves that had
been used for fitting together with the current model magnifications and residuals for each point.
plot/model.dat - this file contains the current model light curve calculated inside the time span
defined in the input/modeldat.ctrl file, this file also specifies cadence of points in the model light
curve.

Info files
The plot directory also contains some handy information about the current run, which is
specifically useful for plotting scripts:

● obs.info - this file contains the information about the number of observatories and their
names and order.

● column.info - provides names and column numbers of each of the values found in
output/chain.* files.

● columnmcmc.info - unveils which of the parameters were actually varied with the MCMC
and in which columns of the chain files they are located.

Super Mongo scripts
There are a few SM script in the plot directory:
plot/plotlc.sm - is used to plot the light curve with model and residuals
plot/plottj.sm - is used to plot the source trajectory

plot/plotmcmc.sm - is designed to plot the MCMC links from the chain.stable to see what are the
correlations, assess the convergence of the chain and see the parameter uncertainties.
There is a file plot/sm.crtl that is used by this scripts and defines the time span for the light curve
plotting, the part of plane the trajectory is plotted on.
To plot the light curve you may use one of two commands:

● sm -m plotlc.sm or simply
● make lc

To plot source apparent trajectory use:
● ./plot_trajectory or simply
● make tj

Authors
Jan Skowron & Subo Dong
special thanks to Jin H. An for the finite source magnification calculation routine

Examples of configuration files (with comments)

input/data.ctrl
directory where data is located ../data/
filename nickname errscale errquad Gamma bad_data
 phot0.dat OGLE 1.0 0.0 0.0 -
 phot1.dat MOA 1.0 0.0 0.0 -
 phot2.dat Bronberg 1.0 0.0 0.0 phot2.bad

input/event.ctrl
NAME
OGLE-2010-BLG-012
RA (in hours floating-point number)
18.23425
DEC (in degrees, floating-point number)
-30.534
T0_PAR: Should be very close to t0
4120.0

input/mcmc.init
MCMC PARAMETERS: mcmc.init

There is one row for every parameter. Every row has 6 columns. These are:
mcmc - vary this parameter in MCMC or keep fixed (1 or 0)
init - initial value of the parameter
min - lower boundary for the value of this parameter
max - upper boundary
stepsize - initial step size
relative position of the parameters here will be used in output as well

name mcmc init min max stepsize
 t0 1 4124.00 1000.0 10000.0 0.05

 u0 1 0.1 -1.0 1.0 0.005
 tE 1 25.00 0.0 500.0 0.5
 rho 0 0.02 0.0 0.2 0.003
 q 1 0.48 0.0 1.0 0.0001
 s 1 0.7 0.0 10.0 0.01
 alpha 1 198.00 -360.0 720.0 0.1
 piEN 0 0.00 -5.0 5.0 0.001
 piEE 0 0.00 -5.0 5.0 0.001

input/mcmc.ctrl
MCMC CONTROL FILE

SEED - random seed (integer)
READ_CORR - value = 0: use step sizes from mcmc.init or value =1: correlation
matrix from a file input/corr.matrix and input/corr.sigmas
FIX_TRANS_PROB - value = 1: fix the step sizes and correletions between parameters
(do not modify transisional probability). value = 0: free
MAX_TRIAL_NUMB - maximal number of trial allowed (to limit total running time of
the program)
NBURN_MIN - 0 if you do not want to change this, otherwise minimal length of
the burning process required by you (it is set in the code to 2*n_dchi2_1, but you can
extend it)
NSTABLE - 0 if you do not want to change this, otherwise lenght of the
stable chain you need (it will be not smaller than 1*n_dchi2_1 or 500)
TEMPERATURE - temperature of the chain (default = 1.0)

put numbers in the lines below, one integer per line, in the same order as in
legend.

1345376245 # SEED
0 # READ_CORR
0 # FIX_TRANS_PROB
60000 # MAX_TRIAL_NUMB
750 # NBURN_MIN
3000 # NSTABLE
1.0 # TEMPERATURE

input/modeldat.ctrl
This file (modeldat.ctrl) tells program how dense and for what times to plot model
light curve
Specify as many regions as you want. One region per line

eg.
HJD_MIN_MODEL HJD_MAX_MODEL DETLA_HJD
5060.0 5111.2 0.1
HJD_MIN_MODEL HJD_MAX_MODEL DELTA_HJD
5111.2 5116.3 0.01
HJD_MIN_MODEL HJD_MAX_MODEL DELTA_HJD
5116.3 5200.0 1.0

input/corr.matrix
Holds correlation matrix for all MCMC parameters
If you have changed the number or order of MCMC parameters, change this matrix
accordingly
You can skip reading in correlation matrix and sigmas by putting READ_CORR equal to
0 in mcmc.ctrl
then the diagonal correlation matrix will be generated (in output/ dir) and
stepsizes from mcmc.init
will be used as sigmas

CORRELATION MATRIX
 1.0 0.0 0.0
 0.0 1.0 0.0
 0.0 0.0 1.0

input/corr.sigmas
Holds sigmas, ie. sqrt of variances, of all MCMC parameters, these are used to
change correlation matrix to covariance matrix
If you have changed the number or order of MCMC parameters, change the order here
accordingly
You can skip reading in correlation matrix and sigmas by putting READ_CORR equal to
0 in mcmc.ctrl
then the diagonal correlation matrix will be generated (in output/ dir) and
stepsizes from mcmc.init
will be used as sigmas

SIGMAS OF PARAMETERS
 0.01
 0.001
 0.1

input/fs.ctrl
this file is used to specify all regions where finite source calculation have to be
made

HJD_min HJD_max
5084.0 5089.0
5109.0 5110.0

plot/sm.ctrl
The file sm.ctrl is used to specify limits for the SM plot

HJD_MIN HJD_MAX
5060.0 5120.2
MAG_MAX MAG_MIN
6.5 9.0
RES_MIN RES_MAX
-0.1 0.1
X_MIN X_MIN

-0.2 0.2
Y_MIN Y_MAX
-0.2 0.2

