Doing More with Photometry Studying binary companions with photometric orbital modulations

Avi Shporer UCSB, LCOGT

Sagan Summer Workshop July 24 2012

Ground-based survey data

HAT-P-7b

Space-based survey data

HAT-P-7b

Photometric variability correlated with the orbit:

Loeb & Gaudi 2003, Jenkins & Doyle 2003, Zucker et al. 2007, Pfahl et al. 2008

Photometric variability correlated with the orbit:

Loeb & Gaudi 2003, Jenkins & Doyle 2003, Zucker et al. 2007, Pfahl et al. 2008

Beaming

Tidal ellipsoidal deformation

Reflection/heating

- Aberration
- Arrival rate

- Aberration
- Arrival rate
- Doppler shift

- Aberration
- Arrival rate

 $F_{\nu} = F_{\nu 0} \left[1 + (3 - \alpha) \frac{v_r}{c} \right]$ Aberration • Arrival rate $v_r \ll c$ $\alpha \equiv \frac{d\log F_{\nu}}{d\log \nu}$ • Doppler shift 1 \sim γυ γ

radial velocity variation

variation in observed flux

radial velocity variation

radial velocity variation

variation in observed flux

Photometric variation following orbital motion

radial velocity variation variation in observed flux

Photometric variation following orbital motion

Photometric variation following orbital motion

$$A_{\rm beam} = \alpha_{\rm beam} 4 \frac{K_{RV}}{c}$$

Photometric variation following orbital motion

$$A_{\rm beam} = \alpha_{\rm beam} 4 \frac{K_{RV}}{c}$$

bolometric $\alpha_{\text{beam}} = 1$

Photometric variation following orbital motion

$$A_{\text{beam}} = \alpha_{\text{beam}} 4 \frac{K_{RV}}{c} \qquad \text{bolometric } \alpha_{\text{beam}} = 1$$
$$A_{\text{beam}} = 2.7 \ \alpha_{\text{beam}} \left(\frac{M_s}{M_{sun}}\right)^{-2/3} \left(\frac{P_{orb}}{\text{day}}\right)^{-1/3} \left(\frac{M_2 \sin i}{M_J}\right) \text{ ppm}$$

•

$$A_{\text{ellip}} = \alpha_{\text{ellip}} \frac{M_2 \sin i}{M_s} \left(\frac{R_s}{a}\right)^3 \sin i$$

$$A_{\text{ellip}} = \alpha_{\text{ellip}} \frac{M_2 \sin i}{M_s} \left(\frac{R_s}{a}\right)^3 \sin i$$
$$A_{\text{ellip}} = 13 \ \alpha_{\text{ellip}} \sin i \left(\frac{R_s}{R_{sun}}\right)^3 \left(\frac{M_s}{M_{sun}}\right)^{-2} \left(\frac{P_{orb}}{\text{day}}\right)^{-2} \left(\frac{M_2 \sin i}{M_J}\right) \text{ ppm}$$

$$A_{\text{ellip}} = \alpha_{\text{ellip}} \frac{M_2 \sin i}{M_s} \left(\frac{R_s}{a}\right)^3 \sin i$$
$$A_{\text{ellip}} = 13 \ \alpha_{\text{ellip}} \sin i \left(\frac{R_s}{R_{sun}}\right)^3 \left(\frac{M_s}{M_{sun}}\right)^{-2} \left(\frac{P_{orb}}{\text{day}}\right)^{-2} \left(\frac{M_2 \sin i}{M_J}\right) \text{ ppm}$$

$$\alpha_{\text{ellip}} = 0.15 \frac{(15+u)(1+g)}{3-u}$$

$$\begin{aligned} A_{\rm ellip} &= \alpha_{\rm ellip} \frac{M_2 \sin i}{M_s} \left(\frac{R_s}{a}\right)^3 \sin i \\ A_{\rm ellip} &= 13 \; \alpha_{\rm ellip} \sin i \left(\frac{R_s}{R_{sun}}\right)^3 \left(\frac{M_s}{M_{sun}}\right)^{-2} \left(\frac{P_{orb}}{day}\right)^{-2} \left(\frac{M_2 \sin i}{M_J}\right) \; \text{ppm} \\ \alpha_{\rm ellip} &= 0.15 \frac{(15+u)(1+g)}{2} \quad \text{gravity darkening} \end{aligned}$$

u \leftarrow limb darkening

3 -

Reflected light

Reflected lightThermal emission

٠

Reflected lightThermal emission

٠

Reflected lightThermal emission

$$A_{\rm refl} = \alpha_{\rm refl} 0.1 \left(\frac{R_2}{a}\right)^2 \sin i$$
Reflection/Heating

Reflected lightThermal emission

$$A_{\rm refl} = \alpha_{\rm refl} 0.1 \left(\frac{R_2}{a}\right)^2 \sin i$$

$$A_{\text{refl}} = 57 \ \alpha_{\text{refl}} \sin i \left(\frac{M_s}{M_{sun}}\right)^{-2/3} \left(\frac{P_{orb}}{\text{day}}\right)^{-4/3} \left(\frac{R_2}{R_J}\right)^2 \text{ ppm}$$

Tuesday, July 17, 2012

Tuesday, July 17, 2012

 $f(t) = a_0 + a_{1c}\cos(\frac{2\pi}{P}t) + a_{1s}\sin(\frac{2\pi}{P}t) + a_{2c}\cos(\frac{2\pi}{P/2}t) + a_{2s}\sin(\frac{2\pi}{P/2}t)$

double harmonic model

Tuesday, July 17, 2012

Tuesday, July 17, 2012

The observed radiation flux from ultra-short period binaries must be modulated due to Doppler effect.

Shakura & Postnov 1987

The observed radiation flux from ultra-short period binaries must be modulated due to Doppler effect.

Shakura & Postnov 1987

The observed radiation flux from ultra-short period binaries must be modulated due to Doppler effect.

Shakura & Postnov 1987

The observed radiation flux from ultra-short period binaries must be modulated due to Doppler effect.

Shakura & Postnov 1987

<u>WD + WD, ground-based:</u> Shporer et al. 2010 Vennes et al. 2011 Brown et al. 2011

Kilic et al. 2011 Hermes et al. 2012

The observed radiation flux from ultra-short period binaries must be modulated due to Doppler effect.

Shakura & Postnov 1987

WD + WD, ground-based: Shporer et al. 2010 Vennes et al. 2011 Brown et al. 2011 Kilic et al. 2011 Hermes et al. 2012

Maxted et al. 2000 sdB + WD van Kerkwijk et al. 2010 A + WD Bloemen et al. 2011 sdB + WD Carter et al. 2011 A + WD Breton et al. 2012 F + WD Silvotti et al. 2012 sdB + WD

Orbital Modulations and Exoplanets

Orbital Modulations and Exoplanets

Mazeh & Faigler 2010

Orbital Modulations and Exoplanets

Mazeh & Faigler 2010 Welsh et al. 2010 Faigler & Mazeh 2011 Shporer et al. 2011 Kipping & Spiegel 2011 Faigler et al. 2012 Mislis et al. 2012 Jackson et al. 2012 Mazeh et al. 2012 Mislis & Hodgkin 2012 Barclay et al. 2012, in prep. Quintana et al. 2012, in prep.

Mazeh & Faigler 2010

Tuesday, July 17, 2012

Look for non-transiting companions

Look for non-transiting companions
 BEER, Faigler & Mazeh 2011, Faigler et al. 2012

Look for non-transiting companions
 BEER, Faigler & Mazeh 2011, Faigler et al. 2012

Look for non-transiting companions
 BEER, Faigler & Mazeh 2011, Faigler et al. 2012

Look for non-transiting companions
 BEER, Faigler & Mazeh 2011, Faigler et al. 2012

•Detailed study of transiting objects:

OFF O

- Look for non-transiting companions
 BEER, Faigler & Mazeh 2011, Faigler et al. 2012
- •Detailed study of transiting objects:
 - -Beaming (and ellipsoidal): photometric mass measurement

- Look for non-transiting companions
 BEER, Faigler & Mazeh 2011, Faigler et al. 2012
- •Detailed study of transiting objects:
 - Beaming (and ellipsoidal): photometric mass measurement
 stars with no high-precision RV

- Look for non-transiting companions
 BEER, Faigler & Mazeh 2011, Faigler et al. 2012
- •Detailed study of transiting objects:
 - Beaming (and ellipsoidal): photometric mass measurement
 stars with no high-precision RV
 - -Reflection/heating: Albedo and day-night difference

K10848064

x 10

AFF

K10848064

detrended light curve, Q0-Q5

detrended light curve, Q0-Q5

Transit+occultation data removed

Double harmonic period analysis

$$f(t) = a_0 + a_{1c}\cos(\frac{2\pi}{P}t) + a_{1s}\sin(\frac{2\pi}{P}t) + a_{2c}\cos(\frac{2\pi}{P/2}t) + a_{2s}\sin(\frac{2\pi}{P/2}t)$$

Parameter	Value
Orbital period, P_{orb} (days)	1.7637 ± 0.0013
Inferior conjunction time, T_0 (BJD)	2455138.7439 ± 0.0013

Consistent with transit ephemeris

Tuesday, July 17, 2012

$$f(t) = a_0 + a_{1c}\cos(\frac{2\pi}{P}t) + \frac{a_{1s}\sin(\frac{2\pi}{P}t)}{P} + \frac{a_{2c}\cos(\frac{2\pi}{P/2}t)}{P/2} + a_{2s}\sin(\frac{2\pi}{P/2}t)$$

Fitted coefficients

a _{1c}	Reflection	-39.8 ± 0.5
a _{1s}	Beaming	5.3 ± 0.4
a _{2c}	Ellipsoidal	-30.3 ± 0.5
a _{2s}		0.0 ± 0.5

Realistic error estimate: Cyclic residuals permutations. 2 x "formal" estimate.

$$f(t) = a_0 + a_{1c}\cos(\frac{2\pi}{P}t) + \frac{a_{1s}\sin(\frac{2\pi}{P}t)}{P} + \frac{a_{2c}\cos(\frac{2\pi}{P/2}t)}{P/2} + a_{2s}\sin(\frac{2\pi}{P/2}t)$$

Fitted coefficients

a _{1c}	Reflection	-39.8 ± 0.5
a _{1s}	Beaming	5.3 ± 0.4
a _{2c}	Ellipsoidal	-30.3 ± 0.5
a ₂₈		0.0 ± 0.5

Photometric mass measurement:

Realistic error estimate: Cyclic residuals permutations. 2 x "formal" estimate.

$$f(t) = a_0 + a_{1c}\cos(\frac{2\pi}{P}t) + \frac{a_{1s}\sin(\frac{2\pi}{P}t)}{P} + \frac{a_{2c}\cos(\frac{2\pi}{P/2}t)}{P/2} + \frac{a_{2s}\sin(\frac{2\pi}{P/2}t)}{P/2}$$

Fitted coefficients

a _{1c}	Reflection	-39.8 ± 0.5
a _{1s}	Beaming	5.3 ± 0.4
a _{2c}	Ellipsoidal	-30.3 ± 0.5
a ₂₈		0.0 ± 0.5

Photometric mass measurement:

$$M_2 \sin i = 9.2 \pm 1.1 M_J$$

see also: Mazeh et al. 2012 Mislis et al. 2012

Realistic error estimate: Cyclic residuals permutations. 2 x "formal" estimate.

$$f(t) = a_0 + a_{1c}\cos(\frac{2\pi}{P}t) + \frac{a_{1s}\sin(\frac{2\pi}{P}t)}{P} + \frac{a_{2c}\cos(\frac{2\pi}{P/2}t)}{P/2} + \frac{a_{2s}\sin(\frac{2\pi}{P/2}t)}{P/2}$$

Fitted coefficients

a _{1c}	Reflection	-39.8 ± 0.5
a _{1s}	Beaming	5.3 ± 0.4
a _{2c}	Ellipsoidal	-30.3 ± 0.5
a _{2s}		0.0 ± 0.5

Realistic error estimate: Cyclic residuals permutations. 2 x "formal" estimate. Photometric mass measurement:

 $M_2 \sin i = 9.2 \pm 1.1 M_J$

see also: Mazeh et al. 2012 Mislis et al. 2012

Massive planet orbiting A-type star

Tuesday, July 17, 2012

HAT-P-7b:

 $M_p = 1.8 M_J$ P = 2.20 d

See also: Borucki et al. 2009 Welsh et al. 2010 Mislis et al. 2012 Jackson et al. 2012

HAT-P-7b:

 $M_p = 1.8 M_J$ P = 2.20 d

See also: Borucki et al. 2009 Welsh et al. 2010 Mislis et al. 2012 Jackson et al. 2012

Full light curve analysis Extended EXOFAST (Eastman et al. 2012)

HAT-P-7b:

 $M_p = 1.8 M_J$ P = 2.20 d

See also: Borucki et al. 2009 Welsh et al. 2010 Mislis et al. 2012 Jackson et al. 2012

Full light curve analysis Extended EXOFAST (Eastman et al. 2012)

HAT-P-7b:

 $M_p = 1.8 M_J$ P = 2.20 d

See also: Borucki et al. 2009 Welsh et al. 2010 Mislis et al. 2012 Jackson et al. 2012

HAT-P-7b:

 $M_p = 1.8 M_J$ P = 2.20 d

See also: Borucki et al. 2009 Welsh et al. 2010 Mislis et al. 2012 Jackson et al. 2012

$$A_{\text{beam}} = \alpha_{\text{beam}} 4 \frac{K_{RV}}{c}$$
$$A_{\text{ellip}} = \alpha_{\text{ellip}} \frac{M_2 \sin i}{M_s} \left(\frac{R_s}{a}\right)^3 \sin i$$

$$A_{\text{beam}} = \alpha_{\text{beam}} 4 \frac{K_{RV}}{c}$$
$$A_{\text{ellip}} = \alpha_{\text{ellip}} \frac{M_2 \sin i}{M_s} \left(\frac{R_s}{a}\right)^3 \sin i$$

A-star-primary systems: van Kerkwijk et al. 2010 Carter et al. 2011 Mazeh et al. 2012

KOI 74 KIC 10657664 KOI 13

$$A_{\text{beam}} = \alpha_{\text{beam}} 4 \frac{K_{RV}}{c}$$
$$A_{\text{ellip}} = \alpha_{\text{ellip}} \frac{M_2 \sin i}{M_s} \left(\frac{R_s}{a}\right)^3 \sin i$$

A-star-primary systems: van Kerkwijk et al. 2010 Carter et al. 2011 Mazeh et al. 2012

KOI 74 KIC 10657664 KOI 13

$$U = \frac{GM_{\star}}{R_{\star}} + \frac{GM_{p}}{\left(A^{2} - 2R_{\star}A\cos\psi + R_{\star}^{2}\right)^{1/2}}$$

$$A_{\text{beam}} = \alpha_{\text{beam}} 4 \frac{K_{RV}}{c}$$
$$A_{\text{ellip}} = \alpha_{\text{ellip}} \frac{M_2 \sin i}{M_s} \left(\frac{R_s}{a}\right)^3 \sin i$$

A-star-primary systems: van Kerkwijk et al. 2010 Carter et al. 2011 Mazeh et al. 2012

KOI 74 KIC 10657664 KOI 13

$$U = \frac{GM_{\star}}{R_{\star}} + \frac{GM_{p}}{\left(A^{2} - 2R_{\star}A\cos\psi + R_{\star}^{2}\right)^{1/2}}$$

Approximations assume:

$$A_{\text{beam}} = \alpha_{\text{beam}} 4 \frac{K_{RV}}{c}$$
$$A_{\text{ellip}} = \alpha_{\text{ellip}} \frac{M_2 \sin i}{M_s} \left(\frac{R_s}{a}\right)^3 \sin i$$

A-star-primary systems: van Kerkwijk et al. 2010 Carter et al. 2011 Mazeh et al. 2012

KOI 74 KIC 10657664 KOI 13

$$U = \frac{GM_{\star}}{R_{\star}} + \frac{GM_{p}}{\left(A^{2} - 2R_{\star}A\cos\psi + R_{\star}^{2}\right)^{1/2}}$$

Approximations assume:

Synchronization

$$A_{\text{beam}} = \alpha_{\text{beam}} 4 \frac{K_{RV}}{c}$$
$$A_{\text{ellip}} = \alpha_{\text{ellip}} \frac{M_2 \sin i}{M_s} \left(\frac{R_s}{a}\right)^3 \sin i$$

A-star-primary systems: van Kerkwijk et al. 2010 Carter et al. 2011 Mazeh et al. 2012

KOI 74 KIC 10657664 KOI 13

$$U = \frac{GM_{\star}}{R_{\star}} + \frac{GM_{p}}{\left(A^{2} - 2R_{\star}A\cos\psi + R_{\star}^{2}\right)^{1/2}}$$

Approximations assume:

- Synchronization
- Alignment

$$A_{\text{beam}} = \alpha_{\text{beam}} 4 \frac{K_{RV}}{c}$$
$$A_{\text{ellip}} = \alpha_{\text{ellip}} \frac{M_2 \sin i}{M_s} \left(\frac{R_s}{a}\right)^3 \sin i$$

A-star-primary systems: van Kerkwijk et al. 2010 Carter et al. 2011 Mazeh et al. 2012

KOI 74 KIC 10657664 KOI 13

$$U = \frac{GM_{\star}}{R_{\star}} + \frac{GM_{p}}{\left(A^{2} - 2R_{\star}A\cos\psi + R_{\star}^{2}\right)^{1/2}} + \frac{1}{2}\omega_{\star}^{2}R_{\star}^{2}(1 - \cos^{2}\lambda)$$

Adopted from Jackson et al. 2012

Approximations assume:

- Synchronization
- Alignment

$$A_{\text{beam}} = \alpha_{\text{beam}} 4 \frac{K_{RV}}{c}$$
$$A_{\text{ellip}} = \alpha_{\text{ellip}} \frac{M_2 \sin i}{M_s} \left(\frac{R_s}{a}\right)^3 \sin i$$

A-star-primary systems: van Kerkwijk et al. 2010 Carter et al. 2011 Mazeh et al. 2012

KOI 74 KIC 10657664 KOI 13

$$U = \frac{GM_{\star}}{R_{\star}} + \frac{GM_{p}}{\left(A^{2} - 2R_{\star}A\cos\psi + R_{\star}^{2}\right)^{1/2}} + \frac{1}{2}\omega_{\star}^{2}R_{\star}^{2}(1 - \cos^{2}\lambda)$$

Adopted from Jackson et al. 2012

Approximations assume:

- Synchronization
- Alignment

Jackson et al. 2012: Allowing non-synchronization and misalignment (see also Pfahl et al. 2008)

Assuming tidal locking and no "hotspot"

Assuming tidal locking and no "hotspot"

Assuming tidal locking and no "hotspot"

Kepler-14 (KOI-98) Buchhave et al. 2011

Kepler-14 (KOI-98) Buchhave et al. 2011

$P_{orb} = 6.79 \text{ d}$ $P_{phot} = 2.92 \text{ d}$ activity?

Kepler-14 (KOI-98) Buchhave et al. 2011

$P_{orb} = 6.79 \text{ d}$ $P_{phot} = 2.92 \text{ d}$ activity?

Scalogram - time evolving periodogram

40 $P_{orb} = 6.79 \text{ d}$ Kepler-14 (KOI-98) Relative Flux [ppm] 30 200 Buchhave et al. 2011 $P_{phot} = 2.92 \text{ d}$ 20 power activity? 10 -20 -300 0^L 0 -400 0.6 0.8 0.2 0.4 0.1 0.2 0.3 0.5 0.6 0.7 0.8 09 Frequency [1/day] Phase Scalogram - time evolving periodogram KOI-J3 **KOI-98** 10-1 10^{0} Period (days) 10^{1} 10² 5000 15000 5000 10000 15000 10000 0 0 Measurement Number Measurement Number **Benjamin Fulton (LCOGT)**

Tuesday, July 17, 2012

40 $P_{orb} = 6.79 \, d$ Kepler-14 (KOI-98) Relative Flux [ppm] 30 200 Buchhave et al. 2011 $P_{phot} = 2.92 \text{ d}$ 20 power activity? 10 -300 0^L 0 -400 0.6 0.8 0.2 0.4 0.1 0.2 0.3 0.5 0.6 0.7 0.8 09 Frequency [1/day] Phase Scalogram - time evolving periodogram **KOI-98** KOI-J3 10-1 10^{0} Period (days) uniform and continuous 10^{1} 10² 5000 15000 5000 10000 15000 10000 0 n Measurement Number Measurement Number **Benjamin Fulton (LCOGT)**

Tuesday, July 17, 2012

40 $P_{orb} = 6.79 \text{ d}$ Kepler-14 (KOI-98) Relative Flux [ppm] 30 200 Buchhave et al. 2011 $P_{phot} = 2.92 \text{ d}$ 20 power activity? 10 -300 0^L 0 -400 0.8 0.2 0.4 0.6 0.1 0.2 0.3 0.5 0.6 0.7 0.8 Frequency [1/day] Phase Scalogram - time evolving periodogram **KOI-98** KOI-J3 10-1 10^{0} Period (days) uniform and continuous 10¹ orbital signal 10² 5000 15000 5000 10000 15000 10000 0 n Measurement Number Measurement Number

Benjamin Fulton (LCOGT)

Stellar activity

Tuesday, July 17, 2012

Tuesday, July 17, 2012

LHS 6343 (Johnson et al. 2012) Brown dwarf + M-star, P = 12.7 d

 $\alpha_{\text{beam}} = 5 + \frac{d \log F_{\lambda}}{d \log \lambda}$

Photometric spin-orbit alignment measurement

Photometric spin-orbit alignment measurement

Photometric spin-orbit alignment measurement

Photometric spin-orbit alignment measurement

Photometric spin-orbit alignment measurement

Photometric spin-orbit alignment measurement

The Rossiter-McLaughlin (RM) effect:

Gaudi & Winn (2006)

Photometric spin-orbit alignment measurement

Photometric spin-orbit alignment measurement

The RM effect

Photometric spin-orbit alignment measurement

The RM effect

Photometric spin-orbit alignment measurement

The RM effect

The beaming effect

Photometric spin-orbit alignment measurement

The RM effect

The beaming effect

The Photometric RM (PRM) effect Shporer et al. 2012 see also: Groot 2012, Hills & Dale 1974

Primary eclipse

Primary eclipse main sequence binaries

Primary eclipse main sequence binaries low mass ratio

Primary eclipse main sequence binaries low mass ratio

-0.1

-0.2

0

Time from mid eclipse [day]

0.1

0.2

Primary eclipse main sequence binaries low mass ratio

Doing More with Photometry Studying binary companions with photometric orbital modulations

Avi Shporer UCSB, LCOGT

Sagan Summer Workshop July 24 2012