The Importance of Stellar Properties to Estimating Planet Characteristics

Andrew Collier Cameron SUPA School of Physics & Astronomy University of St Andrews

Fundamental observables - transits

Bryan et al 2012 (Qatar-2b)

- Fundamental observables:
 - transit depth
 - transit duration
 - impact parameter
- Derived quantities:
 - R_p/R_*
 - R[']_{*}/a
- Need to know:
 - M*
 - Limb darkening
 - cf. Jason Eastman's & Eric Agol's talks yesterday

Transit Duration ($i = 90^{\circ}$)

Consider circular edge-on orbit:

The T_{eff} vs $\rho^{-1/3}\,\text{HR}$ diagram

 R_{*}/a is a direct measure of stellar density:

$$\left(\frac{R_*}{a}\right)^3 = \frac{3\pi}{GP^2} \frac{4\pi R_*^3}{3M_*}$$

$$\Rightarrow \frac{R_*}{a} = \left(\frac{3\pi}{G}\right)^{1/3} P^{-2/3} \rho_*^{-1/3}$$

 Stellar mass estimates are as good as the models that produce the tracks and isochrones!

Empirical mass-radius relation: 94 EBs

Fig. 14 Deviation of the observed radii from a polynomial ZAMS relation in $T_{\rm eff}$ and [Fe/H], $\Delta \log R$ vs. $\log g$. Open symbols denote stars below 0.6 M_{\odot} and pre-main-sequence stars. The dotted line represents the remaining fitted dependence on $\log g$.

Torres, Andersen & Giménez 2010, A&ARv, 18, 67

38 binary components with well-determined [Fe/H] from Torres et al 2010.

Enoch et al 2010, A&A 516, A33

Benign uses for starspots

R. Alonso et al.: CoRoT-Exo-2b

Alonso et al 2008, A&A 482, L21: CoRoT-2 Nutzman et al 2011, ApJ 740, 10

Transit Depth

What fraction of the star's disk does the planet cover?

$$\frac{\Delta f}{f} \approx \left(\frac{r_p}{R_*}\right)^2 = 0.01 \left(\frac{r_p}{r_{Jup}}\right)^2 \left(\frac{R_*}{R_{sun}}\right)^{-2}$$

Find star radius from its spectral type. Observed depth tells us planet's radius.

Starspots as vermin

R. Alonso et al.: CoRoT-Exo-2b

Alonso et al 2008, A&A 482, L21: CoRoT-2 Nutzman et al 2011, ApJ 740, 10

Constant flux deficit? HAT-P-11

Sanchis-Ojeda & Winn 2011, ApJ 743, 61

Transit depth amplification by uneclipsed starspots

Constant flux deficit at all times except when planet occults a spot.

Animation courtesy of Joe Llama, St Andrews

Transit depth amplification

Plot courtesy of Joe Llama, St Andrews

Limb darkening and atmospheric structure

 Depth dependence of source function maps on to angular dependence of emergent specific intensity via Laplace transform:

$$S_{v}(\tau_{v}) = \sum_{n=0}^{\infty} a_{n} \tau_{v}^{n}$$

$$I_{v}^{+}(0,\mu) = \mathcal{L}_{1/\mu} \{ S_{v}(\tau_{v}) \} = \sum_{n=0}^{\infty} n! a_{n} \mu^{n}$$

Wavelength dependence

- Knutson et al 2007
- STIS spectrophotometry of HD 209458b transit

1D versus 3D atmosphere models

Hayek et al 2012, A&A 539, A102: 3D hydrodynamical atmosphere models including granulation vs 1D MARCS model atmosphere.

Transit depth reduction by eclipsed spots

Which effect wins?

Depends on spot coverage and active-belt location.

Fig. 1. Transit equivalent width (TEW) versus transit continuum level as well as the best-fit linear model.

Fig. 2. Average transit light curves obtained by combining the ten profiles exhibiting the highest (thick dashes) and lowest (thin dashes) continuum levels. The crosses indicate our lower envelope estimate and the color gradient (red) illustrates the distribution of data points for all available transits.

Czesla et al 2009, A&A 505, 1277: CoRoT-2

CoRoT-7: Spot-induced RV jitter

2009 HARPS campaign

2012 HARPS campaign

Decorrelation against activity proxies

Queloz et al 2009, A&A 506, 303

CoRoT-7: HARPS CCF

CoRoT-7: HARPS CCF

Flux and RV variations: isolated spot

RV variation is closely approximated by product of light curve and its first derivative

Aigrain, Pont & Zucker 2012, MNRAS 419, 3147

RV variations from photometry

Aigrain, Pont & Zucker 2012, MNRAS 419, 3147

How are flux, CCF and RV jitter related?

HJD - 24450000.0

If you know your enemies and know yourself, you will not be imperiled in a hundred battles... if you do not know your enemies nor yourself, you will be imperiled in every single battle. – *Sun Tzu, c. 6th century BCE*

SDO/HMI Quick-Look Dopplergram: 2011.03.28_13:23:15_TAI

*

10

£

.

SDO/HMI Quick-Look Magnetogram: 2011.03.28_13:23:15_TAI

Using asteroid 4/Vesta to obtain the Sun's radial velocity variations

Using asteroid 4/Vesta to obtain the Sun's radial velocity variations

HARPS detects ... spots on the Sun!

HARPS CCF of asteroid 4 Vesta

2011 September 29 – December 7

(R Haywood et al, in prep.)

HARPS detects ... spots on the Sun!

HARPS CCF of asteroid 4 Vesta

2011 September 29 – December 7

(R Haywood et al, in prep.)

The Sun's radial-velocity jitter

The Sun's radial-velocity jitter

Next step: model line-profile distortions caused by sunspots, granulation, faculae,...

Summary – this was meant to be easy?

The Last Word (courtesy Stephen Kane)

CoRoT-7: FWHM of CCF dip

CoRoT-7: Nightly RV zero-point

Phased RV curve of CoRoT-7b

Gyrochronology

Asteroseismology

• See Bill Chaplin's talk on Friday!