

Sagan Workshop 2012, Gáspár Bakos, Ground-based surveys and transits

Expanding the parameter space

- 1. Massive (many stars)
- 2. High cadence (per minute)
- 3. Long time coverage (months, years)
- 4. High precision (sub percent)

photometry was not available before ground based transiting planet searches.

(but see flickering, globular and open cluster observations, and microlensing).

- Thanks to theoretical predictions of microlensing, transit discovery of HD209458b & Moore's law, 1+2+3+4 materialized in ~2000.
- Expanding the parameter space led to amazing (unexpected) discoveries. (As always.)

Transit Search Programmes

Programme		D	focal	$\Omega^{0.5}$	Nx	Ny	no. of	pixel	sky	star	d	stars	planets
		(cm)	ratio	(deg)	(kpix)	(kpix)	CCDs	(arcsec)	mag	mag	(pc)	(x10 ³)	/month
1	PASS	2.5	2.0	127.25	2.0	2.0	15	57.75	6.8	9.4	83	18	6.3
<u>2</u>	WASP0	6.4	2.8	8.84	2.0	2.0	1	15.54	9.6	11.8	246	2	0.8
<u>3</u>	ASAS-3	7.1	2.8	11.21	2.0	2.0	2	13.93	9.9	12.0	272	5	1.7
<u>4</u>	RAPTOR	7.0	1.2	55.32	2.0	2.0	8	34.38	7.9	11.1	179	33	11.7
<u>5</u>	TrES	10.0	2.9	10.51	2.0	2.0	3	10.67	10.5	12.7	362	10	3.5
<u>6</u>	<u>xo</u>	11.0	1.8	10.06	1.0	1.0	2	25.00	8.6	11.9	258	3	1.2
7	HATnet	11.1	1.8	19.42	2.0	2.0	6	13.94	9.9	12.5	338	28	9.7
8	SWASP	11.1	1.8	31.71	2.0	2.0	16	13.94	9.9	12.5	338	74	26.0
<u>9</u>	Vulcan	12.0	2.5	7.04	4.0	4.0	1	6.19	11.6	13.4	497	12	4.1
10	RAPTOR-F	14.0	2.8	5.93	2.0	2.0	2	7.37	11.3	13.4	498	8	2.9
<u>11</u>	BEST	19.5	2.7	3.01	2.0	2.0	1	5.29	12.0	14.2	668	5	1.8
12	Vulcan-S	20.3	1.5	6.94	4.0	4.0	1	6.10	11.7	14.1	642	24	8.5
<u>13</u>	SSO/APT	50.0	1.0	5.05	2.9	3.1	2	4.20	12.5	15.5	1103	65	22.8
<u>14</u>	RATS	67.0	3.0	1.31	2.0	2.0	1	2.30	13.8	16.4	1548	12	4.2
<u>15</u>	TeMPEST	76.0	3.0	0.77	2.0	2.0	1	1.35	15.0	17.1	1944	8	2.9
<u>16</u>	EXPLORE-OC	101.6	7.0	0.32	2.0	3.3	1	0.44	17.1	18.4	2881	5	1.6
<u>17</u>	PISCES	120.0	7.7	0.38	2.0	2.0	4	0.33	17.1	18.6	3045	8	2.7
<u>18</u>	ASP	130.0	13.5	0.17	2.0	2.0	1	0.30	17.1	18.7	3125	2	0.6
<u>19</u>	OGLE-III	130.0	9.2	0.59	2.0	4.0	8	0.26	17.1	18.7	3125	20	7.1
<u>20</u>	STEPSS	240.0	0.0	0.41	4.0	2.0	8	0.18	17.1	19.5	3757	17	5.9
<u>21</u>	INT	250.0	3.0	0.60	2.0	4.0	4	0.37	17.1	19.5	3800	37	13.1
<u>22</u>	ONC	254.0	3.3	0.53	2.0	4.0	4	0.33	17.1	19.5	3817	30	10.5
<u>23</u>	EXPLORE-N	360.0	4.2	0.57	2.0	4.0	12	0.21	17.1	19.9	4196	46	16.2
24	EXPLORE-S	400.0	2.9	0.61	2.0	4.0	8	0.27	17.1	20.0	4313	58	20.1

List from Keith Horne, ~2003

Transit Search Programmes

Programme		D	focal	$\Omega^{0.5}$	Nx	Ny	no. of	pixel	sky	star	d	stars	planets
		(cm)	ratio	(deg)	(kpix)	(kpix)	CCDs	(arcsec)	mag	mag	(pc)	(x10 ³)	/month
-		2.5	2.0	127.25	2.0	2.0	15	57.75	6.8	9.4	83	18	6.3
	WA CDO	6.4	2.8	8.84	2.0	2.0	1	15.54	9.6	11.8	246	2	0.8
• <u>3</u>	ASAS-3	7.1	2.8	11.21	2.0	2.0	2	13.93	9.9	12.0	272	5	1.7
• <u>4</u>	RAPTOR	7.0	1.2	55.32	2.0	2.0	8	34.38	7.9	11.1	179	33	11.7
<u> </u>	1120	10.0	2.9	10.51	2.0	2.0	3	10.67	10.5	12.7	362	10	3.5
<u>6</u>	<u>xo</u>	11.0	1.8	10.06	1.0	1.0	2	25.00	8.6	11.9	258	3	1.2
7	HATnet	11.1	1.8	19.42	2.0	2.0	6	13.94	9.9	12.5	338	28	9.7
8	SWASP	11.1	1.8	31.71	2.0	2.0	16	13.94	9.9	12.5	338	74	26.0
-	· metan	12.0	2.5	7.04	4.0	4.0	1	6.19	11.6	13.4	497	12	4.1
• <u>10</u>	RAPTOR-F	14.0	2.8	5.93	2.0	2.0	2	7.37	11.3	13.4	498	8	2.9
• <u>11</u>	BEST	19.5	2.7	3.01	2.0	2.0	1	5.29	12.0	14.2	668	5	1.8
	Martine C	20.3	1.5	6.94	4.0	4.0	1	6.10	11.7	14.1	642	24	8.5
-	<u></u>	50.0	1.0	5.05	2.9	3.1	2	4.20	12.5	15.5	1103	65	22.8
-	ATT D	67.0	3.0	1.31	2.0	2.0	1	2.30	13.8	16.4	1548	12	4.2
-	TOME DO I	76.0	3.0	0.77	2.0	2.0	1	1.35	15.0	17.1	1944	8	2.9
<u></u>		101.6	7.0	0.32	2.0	3.3	1	0.44	17.1	18.4	2881	5	1.6
	10010	120.0	7.7	0.38	2.0	2.0	4	0.33	17.1	18.6	3045	8	2.7
<u>-10</u>	<u></u>	130.0	13.5	0.17	2.0	2.0	1	0.30	17.1	18.7	3125	2	0.6
<u>19</u>	OGLE-III	130.0	9.2	0.59	2.0	4.0	8	0.26	17.1	18.7	3125	20	7.1
		240.0	0.0	0.41	4.0	2.0	8	0.18	17.1	19.5	3757	17	5.9
		250.0	3.0	0.60	2.0	4.0	4	0.37	17.1	19.5	3800	37	13.1
	0110	254.0	3.3	0.53	2.0	4.0	4	0.33	17.1	19.5	3817	30	10.5
	BHI BORD II	860.0	4.2	0.57	2.0	4.0	12	0.21	17.1	19.9	4196	46	16.2
-	Littlette -	400.0	2.9	0.61	2.0	4.0	8	0.27	17.1	20.0	4313	58	20.1

Transit Search Programmes

Programme		D	focal	$\Omega^{0.5}$	Nx	Ny	no. of	pixel	sky	star	d	stars	planets
		(cm)	ratio	(deg)	(kpix)	(kpix)	CCDs	(arcsec)	mag	mag	(pc)	(x10 ³)	/month
-	<u> </u>	2.5	2.0	127.25	2.0	2.0	15	57.75	6.8	9.4	83	18	6.3
	WA CDO	6.4	2.8	8.84	2.0	2.0	1	15.54	9.6	11.8	246	2	0.8
<u></u>	4.040.2	7.1	2.8	11.21	2.0	2.0	2	13.93	9.9	12.0	272	5	1.7
<u>-</u>	KALLOK	7.0	1.2	55.32	2.0	2.0	8	34.38	7.9	11.1	179	33	11.7
	1120	10.0	2.9	10.51	2.0	2.0	3	10.67	10.5	12.7	362	10	3.5
<u>6</u>	<u>xo</u>	11.0	1.8	10.06	1.0	1.0	2	25.00	8.6	11.9	258	3	1.2
<u>7</u>	HATnet	11.1	1.8	19.42	2.0	2.0	6	13.94	9.9	12.5	338	28	9.7
8	SWASP	11.1	1.8	31.71	2.0	2.0	16	13.94	9.9	12.5	338	74	26.0
-	· mean	12.0	2.5	7.04	4.0	4.0	1	6.19	11.6	13.4	497	12	4.1
<u> </u>	KIII IOK I	14.0	2.8	5.93	2.0	2.0	2	7.37	11.3	13.4	498	8	2.9
• <u>11</u>	BEST	19.5	2.7	3.01	2.0	2.0	1	5.29	12.0	14.2	668	5	1.8
-12		20.3	1.5	6.94	4.0	4.0	1	6.10	11.7	14.1	642	24	8.5
-	<u></u>	50.0	1.0	5.05	2.9	3.1	2	4.20	12.5	15.5	1103	65	22.8
-	<u></u>	67.0	3.0	1.31	2.0	2.0	1	2.30	13.8	16.4	1548	12	4.2
-	TOME LOT	76.0	3.0	0.77	2.0	2.0	1	1.35	15.0	17.1	1944	8	2.9
-		101.6	7.0	0.32	2.0	3.3	1	0.44	17.1	18.4	2881	5	1.6
	10010	120.0	7.7	0.38	2.0	2.0	4	0.33	17.1	18.6	3045	8	2.7
<u> </u>	<u>7151</u>	130.0	13.5	0.17	2.0	2.0	1	0.30	17.1	18.7	3125	2	0.6
<u>_10</u>		130.0	9.2	0.59	2.0	4.0	8	0.26	17.1	18.7	3125	20	7.1
		240.0	0.0	0.41	4.0	2.0	8	0.18	17.1	19.5	3757	17	5.9
		250.0	3.0	0.60	2.0	4.0	4	0.37	17.1	19.5	3800	37	13.1
	0110	254.0	3.3	0.53	2.0	4.0	4	0.33	17.1	19.5	3817	30	10.5
-		860.0	4.2	0.57	2.0	4.0	12	0.21	17.1	19.9	4196	46	16.2
-	Entreone e	400.0	2.9	0.61	2.0	4.0	8	0.27	17.1	20.0	4313	58	20.1

Transit Search Programmes

Dec	Programme		focal	$\Omega^{0.5}$	Nx	Ny	no. of	pixel	sky	star	d	stars	planets
i i ogi annine		(cm)	ratio	(deg)	(kpix)	(kpix)	CCDs	(arcsec)	mag	mag	(pc)	(x10 ³)	/month
-		2.5	2.0	127.25	2.0	2.0	15	57.75	6.8	9.4	83	18	6.3
-	WA CDO	6.4	2.8	8.84	2.0	2.0	1	15.54	9.6	11.8	246	2	0.8
<u></u>	10102	7.1	2.8	11.21	2.0	2.0	2	13.93	9.9	12.0	272	5	1.7
<u>-</u>	KALLOK	7.0	1.2	55.32	2.0	2.0	8	34.38	7.9	11.1	179	33	11.7
	11120	10.0	2.9	10.51	2.0	2.0	3	10.67	10.5	12.7	362	10	3.5
<u>6</u>	<u>xo</u>	11.0	1.8	10.06	1.0	1.0	2	25.00	8.6	11.9	258	3	1.2
<u>7</u>	HATnet	11.1	1.8	19.42	2.0	2.0	6	13.94	9.9	12.5	338	28	9.7
<u>8</u>	SWASP	11.1	1.8	31.71	2.0	2.0	16	13.94	9.9	12.5	338	74	26.0
-	- uicui	12.0	2.5	7.04	4.0	4.0	1	6.19	11.6	13.4	497	12	4.1
<u> </u>	KIN TOK I	14.0	2.8	5.93	2.0	2.0	2	7.37	11.3	13.4	498	8	2.9
• <u>11</u>	BEST	19.5	2.7	3.01	2.0	2.0	1	5.29	12.0	14.2	668	5	1.8
	Malana C	Μ	TΑ	<u>\$</u> 94	4.0	4.0	1	6.10	11.7	14.1	642	24	8.5
<u></u>	<u></u>	50:0	1.0	5.05	2.9	3.1	2	4.20	12.5	15.5	1103	65	22.8
-	ATT D	KŒ	3.	1.31	2.0	2.0	1	2.30	13.8	16.4	1548	12	4.2
<u></u>	TOME LOT	76.0	3.0	0.77	2.0	2.0	1	1.35	15.0	17.1	1944	8	2.9
-10		Me	an	63	2.0	3.3	1	0.44	17.1	18.4	2881	5	1.6
	TIDELO	120.0	ŤC	0.38	2.0	2.0	4	0.33	17.1	18.6	3045	8	2.7
<u>-10</u>	<u></u>	130.0	13.5	0.17	2.0	2.0	1	0.30	17.1	18.7	3125	2	0.6
<u> 10</u>		130.0	9.2	0.59	2.0	4.0	8	0.26	17.1	18.7	3125	20	7.1
	CTEDGG	240.0	0.0	0.41	4.0	2.0	8	0.18	17.1	19.5	3757	17	5.9
<u></u>		260.5	FA F	0 , 60AS	2 6A R	40 A S	TEP	0.37	17.1	19.5	3800	37	13.1
	0110	258	33ri	0.53 PT		PAC	4 E	D ³³ inla	17.1	19.5	3817	30	10.5
-	Entre Dorte II	860.0	4.2	0.57	2.0	4.0	12	0.21	17.1	19.9	4196	46	16.2
-	EAT BOTTE D	400.0	2.9	0.61	2.0	4.0	8	0.27	17.1	20.0	4313	58	20.1

Ground-based discoveries yielded:

- True masses, radii for many planets → density, structure [~130]. Taxonomy of exoplanets (inflated planets, super-Jupiters, Sapiters, etc). Mass—radius relation for M_P>20M_E.
 Various other relations, e.g R_P vs (T_{eq} ,[Fe/H]_{*},...).
- Detection of planetary atmospheres via transmission spectroscopy or occultation spectroscopy.
- Measurements of planetary brightness temperature via the occultation of the planet (Spitzer and ground-based). [30+]
- Sky projected angle of stellar spin axis and planetary orbital normal via the RM-effect → formation [40+]
- Multiple planetary systems (with one component transiting)
- Falling-in planets (e.g. WASP-18b)
- Ground-work for space-based discoveries: follow-up procedures, confirmation know-how, high precision RVs for faint stars, bisectors, planet parameter determinations, etc.

Space-based discoveries yielded:

- First unambiguous transit timing variations → perturber bodies, and masses.
- Small radius planets, super-Earths, HZ planets.
- Multiple transiting planetary systems (architecture constraints on formation, evolution).
- Firm statistics on radius, period distribution and multiplicity. Planets are plentiful. Small ones and long period ones are even more.
- Orbital evolution (e.g. variable transit depths, durations, impact parameters).
- Circumbinary transiting planets (incl. spin—orbit alignment [Kep-16]).
- Optical signature of planets in Kepler light curves (e.g. phase function, reflection, occultation, measurement of albedos, beaming, ellipsoidal variation).

Inventory of ground-based surveys – OGLE

- Not explicitly transit search project. Was in a unique position in ~2002 regarding FOV, data reduction techniques, expertise.
- PI: Andrzej Udalski
- 1.3m telescope. Current OGLE-4 has 1.2° x 1.2° FOV with 16 x 16 Mpix.
- 8 planets (OGLE-TR-56b, 113b, 132b, 111b, 10b + 182b, 211b, L9b).
- P € [1.2,4.01] days.
- OGLE-TR-56b is an ultra-short period "Very hot Jupiter" (an intrinsically rare object).
- In addition, discovery of 6 microlensing planets.
- Has become passive in TEP searches (due to faintness of targets with V>15).

Ground-based surveys – TrES

- STARE + Sleuth + PSST, network of 3 telescopes.
- Tim Brown, Dave Charbonneau, Georgi Mandushev, Ted Dunham.
- Great success in the 'early times' (2004 2006).
- Winding down (if operational).
- 0.1m telescopes, 6° x 6° FOV with 4K 16K Mpix.
- 5 planets (and initial detection of HD209458b by STARE)
- ▶ P € [1.3,3.55] days.
- V < 13 targets. Follow-up primarily by Dave Latham's team.

Ground-based surveys – XO

- Installed at Maui.
- PI: Peter McCullough
- 2 x 0.11m telescopes, 7° x 7° FOV with 4K Mpix.
- 5 planets (one in common with HAT).
- P € [2.6,4.18] days.
- V < 13 targets. Follow-up primarily by Extended Team (ET).
- Strip scan mode (7° x 63°)

Ground-based surveys – HATNet

- FLWO/Arizona (4) and SMA/Mauna Kea/Hawaii (2)
- Operational: 2003 present
- 6 x 0.11m telescopes, 10° x 10° FOV, each with 16K Mpix, sloan r filter.
- First network of identical hardware.
- 40^{*} transiting planets (+1 in common with WASP, +1 with XO, +1 KELT, +1 Kepler,+1 TrES).
- P € [1.21,10.86] days.
- V < 13.5 targets. Follow-up primarily with Dave L team, then NOT, Subaru, Keck.
- M_P € [0.08,10] M_J. 2 exo-Neptunes, number of super-Jupiters (M > 4 M_J).
- 1st and 2nd TEP in a multi-planet system (HAT-P-13b, -17b) with full (including P) orbital solution.

*: submtted to a refereed journal, posted on astroph.

Ground-based surveys – WASP

- 2 stations: La Palma (Canary Islands) and SAAO (South Africa).
- Operational: 2004 present
- Don Pollacco, Andrew Cameron, Coel Hellier, Geneva team et al.
- 2 x (8 x 0.11m) telescopes, 16° x 32° FOV, each with 4K x 16K pix BI CCD, no filter.
- Massive, professional hardware.
- 53 planets (+2 in common with HAT, +possibly others common with other projects.).
- P € [0.78,8.15] days.
- V < 13.5 targets. Follow-up with OHP and Geneva team (Coralie, HARPS).
- M_P € [0.25,60] M_J.
- Very-short period super-massive TEPs (-18b: P=0.94d, M=10.4 M_J !)
- Highly bloated planets. Planet around an early fast rotator (WASP-33). Tomography.

Ground-based surveys – Mearth

et al. 2009

- Currently 1 station: FLWO, Arizona
- David Charbonneau, Jonathan Irwin
- Operational: 2008 present
- 8 x 0.4m telescopes, 26' x 26' FOV, each with 2K x 2K pix BI CCD, wide filter.
- Off-the-shelf mounts, optics, CCDs, control software.
- 1 planet: GJ1214b (super-Earth? mini-Neptune?)
- Focused search on M dwarfs.
- Southern station at CTIO under construction.

Ground-based surveys – Qatar (QES)

- 1 station: New Mexico
- Operational: ~2010 present
- (4 x 0.14m + 1 x 0.11m) telescopes, 11° x 11° FOV, each with altogether 8K x 8K pix FI (FLI) CCD, no filter.
- Professional, off-the-shelf hardware (Mathis fork mount, FLI CCD, Canon 400mm lens, Macbooks
- 2 planets, both around K dwarfs with P~1.3d.
- V < 14 targets; goes somewhat fainter than HAT, WASP, KELT (see HATSouth).
- Follow-up & scientific analysis with Dave L. and members of the SuperWASP team.

Ground-based surveys – HATSouth

- 3 stations: LCO (Chile), HESS (Namibia), SSO (Australia).
- Operational: 2010 present.
- 6 x (4 x 0.2m) telescopes, each with 8° x 8° FOV, 8K x 8K pix FI CCD, sloan r filter.
- "Home-made" dome, mount, electronics, software.
- Off-the-shelf (Apogee) CCD, (Takahashi) optics, filters.
- 1 planet (HATS-1b) with P=3.44d.
- V < 14.5 targets. K and M dwarfs.
 Follow-up with extended team using multiple resources.
- Sensitive to long period and shallow transits.
- Princeton, MPIA, ANU, PUC collaboration.
- See Bakos et al. 2012, Penev et al 2012, astroph

Ground-based surveys – KELT

- 2 stations: Arizona and SAAO (South Africa).
- Operational: 2005? present
- 2 x 0.05m telescopes, 26° x 26° FOV, each with 4K x 4K pix FI CCD, no filter.
- Massive mount, very wide angle, fast focal ratio optics.
- 2 planets. One is a 27 M_J planet around a V=9, fast rotator star.
- P € [1.21,4.11] days.
- V < 12 (bright) targets. Follow-up with Dave L. team.
- Very bright host stars, fast rotators.

Planetary mass—radius diagram, per project

Planetary mass—radius diagram, ground vs. space

*Submitted to peer reviewed journal and posted on astroph

Sagan Workshop 2012, Gáspár Bakos, Ground-based surveys and transits

Statistics

Russell's original "HR" diagram, 1911

Hipparcos HRD at circa 2000

Evolution of hardware

Sagan Workshop 2012, Gáspár Bakos, Ground-based surveys and transit

Add "transit-search-project to basket" era

Sagan Workshop 2012, Gáspár Bakos, Ground-based surveys and transits

Present/planned surveys with no TEPs (yet) – APACHE

- 1 station: Astronomical Observatory of the Autonomous Region Aosta Valley (OAVdA)
- Operational: 2012? present
- 4 x 0.4m telescopes, 26' x 26' FOV, each with 1K x 1K pix BI CCD
- Similar (almost identical?) to Mearth.

Present/planned surveys with no TEPs (yet) – CSTAR

- 1 station: Dome A
- Operational: $2012? \rightarrow$
- 4 x 0.1m telescopes, 4° x 4° FOV, each with 1K x 1K pix frame txfer CCD

Multi-color No moving parts.

Fig.7. CSTAR in Dome A (Installed by Prof. Xu Zhou and Zhenxi Zhu)

Present/planned surveys with no TEPs (yet) – ASTAR

- 1 station: Dome A
- Operational: $2012? \rightarrow$
- 3 x 0.5m telescopes, 4° x 4° FOV.
 Schmidt telescope (-like).
- Multi-color
- First one installed to Dome A

Present/planned surveys with no TEPs (yet) – ASTEP

- Dome C
- PI: Tristan Guillot
- ASTEP-400: 0.4m telescope with 1.2° x 1.2° FOV, 2K x 2K BI CCD (Andor DW 436)
- Off-the-shelf mount, guiding.
- Optimized for low temperature.
- 2009 present
- ASTEP-South: 0.1m telescope fixed, staring at the pole.

Present/planned surveys with no TEPs (yet) – PTF

- Palomar Transient Factory, PTF/M dwarfs, PTF/Orion project.
- PI: Shri Kulkarni.
- Palomar 1.2m Schmidt telescope + giant mosaic CCD yielding 2.7° x 2.7° FOV
- 3000 M dwarfs per exposure, cycling through 8—10 fields.
- 2009 present
- 14 eclipsing M dwarfs, one planetary transit candidate around a T Tauri star.

Present/planned surveys with no TEPs (yet) – Solaris

- Planning 3 sites: Argentina, Australia, South Africa.
- PI: Maciej Konacki
- 0.5m telescopes, one per site (but 2 at SAAO).
- Off-the-shelf mount, optics, CCD, dome.
- Search for circumbinary planets by looking at eclipsing binaries.
- 2011/2012 present.

Sagan Workshop 2012, Gáspár Bakos, Ground-based surveys and transits

Dunlap Institute Arctic Telescope and Wide-field cameras in the High Arctic

- 0.5m f/6.8 telescope, 0.6° x 0.6° field.
- PI: Nicholas Law
- Ellesmere Island, latitude 80°
- 2012 \rightarrow (?)
- Wide-field Cameras in the High Arctic:
- 85mm f/1.2 lenses, each 22° x 22° FOV

Sagan Workshop 2012, Gáspár Bakos, Ground-based surveys and transits

Present/planned surveys with no TEPs (yet) – NGTS

Ground-based transit survey aimed at detecting sub-Neptune sized exoplanets around bright stars

> Robotic facility composed of 12 200mm telescopes equipped with 2Kx2K NIR sensitive detectors with a 8deg² FoV

> > T+VI TI+VST

First non-ESO experiment at Paranal

See poster from Neveu

Paranal residencia

Dedicated to TEP follow-up – TRAPPIST

- 0.6m telescope, 22' x 22' field.
- PI: Michäel Gillon
- La Silla, Chile
- \sim 2010 → present
- High precision photometry followup, primarily of WASP targets.
- Off-the-shelf components: Astelco NTM-500 direct drive, FLI ProLine PL3041-BB CCD.

St. Luc – GJ 436b

- 0.6m telescope
- Discovery of the transit of GJ 436b (Gillon et al.)

Other transit search, confirmation & follow-up efforts

- Transit Ephemeris Refinement and Monitoring Survey (TERMS) (see papers from Kane, von Braun, Dragomir and collaborators)
- TRESCA (exoplanet transit database = ETD. Luboš Brát.).
- transitsearch.org, oklo.org, systemic (Laughlin et al.)
- Transit Light Curve (TLC) project (Winn, Holman et al.), primarily using the FLWO 1.2m telescope.
- ... and many others

TRESCA

In 2011: 741 transit observations uploaded from 150 observers. Altogether more than 1500 transit light curves on 110 planets.

Operation of ground-based surveys

 Operations are mostly "autonomous" (fully automated, preprogrammed in advance). As compared to robotic, remotely operated, and other levels of automation.

- Systems take calibration frames (biases, darks, skyflats).
- Observe every clear hour (minute) during the night using weather sensors (wind, humidity, precipitation, cloud cover, lightnings,etc).
- Make intelligent decisions depending on the conditions.
- Operations are optimized: perform astrometry, autofocusing in between exposures.
- Networked operations, combination of data from multiple sites.

HATs at Mauna Kea

HATs at MK Tue Jan 11 10:23:28 2005

HATSouth @ Namibia 2011-04-20 03:19:23 (GMT+1; no local time zone!)

HAT-South LCO weather station

 (\mathbb{N})

Exp. Time = 75.0000sec.

Gain = 700

All-sky (fisheye) image

Wed, Dec 21 08:10:04 UTC

s

Detailed weather-logs

LCO: 8.48 hrs HESS: 7.15 hrs SSO: 4.64 hrs

Servicing, repairs and maintenance

HATs at MK Mon Jan 3 13:40:23 2005

Sagan Workshop 2012, Gáspár Bakos, Ground-based surveys and transits

Servicing, repairs and maintenance

Engineering Flowchart

Sagan Workshop 2012, Gáspár Bakos, Ground-based surveys and transits

Yes

Should it?

No

Yes

No

Data reduction

- Wide field (up to 26 x 26 degrees), spatially variable PSF, highly distorted projection of sky (astrometric solutions).
- Under-sampled stellar profiles, often coupled with poor quality semi-professional front-illuminated (but affordable) CCDs.
- Extreme crowding.
- Time-variable: PSF, pointing, astrometry, CCD gain.
- Tricky calibration due to wide field and effects above.
- Peltier-cooled (+forced air, low-maintenance) systems with dark current and hot pixels.
- Classical astrometry/photometry packages were sub-optimal.
- Significant software development effort. See e.g. Image Subtraction (ISIS), initially developed for microlensing searches, in particular OGLE (→ 5 planets in 2002).
- TFA, BLS, SysREM, astrometry.net, etc.
- Data volume: hundreds of terabytes.

Data volume can be daunting

Photometric precision

Sagan Workshop 2012, Gáspár Bakos, Ground-based surveys and transits

HAT-P-7 ground vs space

Sagan Workshop 2012, Gáspár Bakos, Ground-based surveys and transits

HAT-South first light image (1 chip out of 4)

Transiting planets with binary stellar companions

Showcasing two examples

Figure 1. Top: the HARPS (brown) and CORALIE (blue) radial velocities of WASP-19 together with the fitted model. Middle: the transit region shown expanded. Bottom: the NTT transit light curve and fitted model. (A color version of this figure is available in the online journal.)

Sagan Workshop 2012, Gáspár Bakos, Ground-based surveys and transits

Stretches of clear weather

Transit recovery function

Stellar populations

N_{dwarf}/N_{all}

0.5

0.4

0.3

0.2

0.1

0

-100

-80

-60

-40

Precision matters:

- •TEP/candidate rate: 1/10 for 1% photometry
- TEP/candidate rate: 1/25 for 2%

Sagan Workshop 2012, Gáspár Bakos, Ground-based surveys and transits

40

20

-20

0

b [deg]

HN, 1%, Dwarf/ALI

HN, 2%, Dwarf/ALL HS, 1%, Dwarf/ALL HS, 2%, Dwarf/ALL

80

100

Yield calculations

- Uses Besançon models
- Simulations take into account Kepler-based radius and period distribution.
- Corrected for geometric transit probability
- 2 month observing with realistic weather pattern (based on real data)
- Realistic noise model ("pink"),

Yield calculations

Future prospects

- Perhaps 1000 hot Jupiters all sky around r<12.5
- Many more transiting Neptunes and super Earths
- Some of these are within the reach of current, improved, and next generation surveys.
- Brightness of the host star is important
- Strong synergies between ground-based and space-based surveys.
- Ground-based surveys are going with full force, with more to come.