Determining Physical Parameters of M Dwarf Planet-Hosts

G2V [Sun]

> Phil Muirhead Caltech Postdoc

Determining Physical Parameters of M Dwarf Planet-Hosts

Can also use stellar params to constrain transit fit! Useful for multiple/low SNR transit light curves (J. Carter w/ KOI 961)

Determining Physical Parameters of M Dwarf Planet-Hosts

Messy combination of:

- Empirical Measurements
 - Luminosities from Parallaxes and Photometry
 - Masses from SB2 Binaries
 - Masses and Radii from Eclipsing SB2 Binaries
 - Metallicities from FGK + M Wide Binaries
 - Radii from Interferometry
 - Stellar densities from planet transits?
- Evolutionary Models
 - Predict M, R and L at a given age, metallicity
- Atmospheric Models
 - Predict spectra (and colors) at a given T_{Eff}, metallicity and logg

The Canonical Method

 Mass-Luminosity Relation

 Calibrated on SB2s with parallaxes

- Mass-Radius Relation
 - Empirical from Eclipsing SB2s
 - e.g. Torres et al. (2010)
 - Or predictions from Evolutionary Models
 - e.g. Baraffe et al. (1998), Feiden et al. (2011)

The Canonical Method

 Mass-Luminosity Relation

 Calibrated on SB2s with parallaxes

- Mass-Radius Relation
 - Empirical from Eclipsing SB2s
 - e.g. Torres et al. (2010)
 - Or predictions from Evolutionary Models
 - e.g. Baraffe et al. (1998), Feiden et al. (2011)

M Dwarf Mass and Radius w/o Parallax

Burden falls on colors and spectra, which trace effective temperature and metallicity.

Kepler Input Catalog

M Dwarf Parameters from Photometric Colors Alone

- Extremely important for planet occurrence statistics
 - C. Dressing (CfA)
- Bayesian approach
 - Take everything you know, find the most likely values given the data
 - Johnson et al. 2011, 2012
- Need more empirical measurements!
 - More SB2s, EBs
 - Interferometric Radii
 - Boyajian et al. (2012)

$$\chi_{\text{tot}}^{2} = \sum_{i=1}^{3} \left(\frac{m_{i,A} - m_{i}(M_{A}, d)}{\sigma_{m_{i,A}}} \right)^{2} + \sum_{i=1}^{3} \left(\frac{m_{i,B} - m_{i}(M_{B}, d)}{\sigma_{m_{i,B}}} \right)^{2} + \left(\frac{V_{\text{tot}} - V_{\text{tot}}(M_{A}, M_{B}, d, F)}{\sigma_{V_{\text{tot}}}} \right)^{2} + \left(\frac{a_{R} - a_{R}(M_{A}, M_{C}, P)}{\sigma_{a_{R}}} \right)^{2}.$$

Spectroscopy

Optical Spectroscopy

- PMSU Survey
 - Reid, Hawley and Gizis
- Spectral Indices
 - TiO, CaH, CaOH
 - Useful for spectral typing, determining luminosity class
 - Not well calibrated to physical T_{Eff} or [M/H]
 - and therefore stellar mass and radius

Optical Spectroscopy

- New effort by J. S. Pineda and M. Bottom (Caltech)
- Archival HIRES M dwarf spectra from the California Planet Search
- Calibrate EWs to Delfosse et al. Stellar Mass

Optical Spectroscopy

- New effort by A. Mann (IfA)
- Calibrate modres optical spectra to physical parameters

K-Band Infrared Spectroscopy

Palomar-TripleSpec

Herter et al. 2008

Interpolate T_{eff} and [M/H] onto Dartmouth Isochrones for Mass and Radius

Rojas-Ayala et al. (2010, 2012) T_{Eff} and [M/H] Dotter et al. (2008) M, R, L, M_K, distance

Compare to Delfosse Masses

- Rojas-Ayala (2012) contains K-band spectra of 122 nearby M dwarfs.
- Compare interpolated mass to Delfosse et al. (2000) masses for stars with *Hipparcos* parallaxes.
- No systematic difference in mass estimates!

KOI 961/Kepler 42 – Bootstrap off Barnard's Star

Barnard's Star

A Small Star with Large Proper Motion (Barnard 1916)

- Good *Hipparcos* parallax (d = 1.8 pc)
 Absolute magnitude -> Mass
 - Absolute magnitude -> Mass
- Old (> 7.5 Gyr)
 - Slow rotator, no quiescent H-alpha emission, "Thick Disk" kinematics (Leggett 1992)
- Interferometric Radius! (Lane et al 2001, Boyajian et al. 2012)
- Carefully stitched spectra for bolometric luminosity (Dawson & de Robertis 2004)
 - With radius gives *empirical* Teff

KOI 961/Kepler 42 – Bootstrap off Barnard's Star

- Also used bootstrap method on GJ 1214 to double-check.
- Recovered parameters based on *transit a/R*^{*} not models!!!
 - Method A from Carter et al. 2011

KOI-961 and Its 3 Known Planets

0

01

03

Jupiter and Its 4 Largest Moons

Io Europa Ganymede Callisto

Orbital Scale = 5 x Size Scale

0

02

Caveats/Research Problems

 How does activity change the connection between (Mass,Radius) and (T_{eff}[M/H])?

AKA: What about magnetic fields!

More Research Problems

- Characterizing individual M dwarfs with exciting planets is fun...
- BUT we need physical parameters of ALL *Kepler* M dwarf targets for accurate statistics. Some possible approaches:

– Spectra of all 3500 M dwarf targets?

- Or a sub-sample, but how do you define it? Colors?
- Better KIC color calibration to stellar mass and radius?
- Parallaxes directly from Kepler data?
 - Few are willing to try. Crowd-source this for prize money?
- Wait for *Gaia*... Launch next year!