Survey Statistics (Planet Occurrence)

Andrew Howard
UC Berkeley \rightarrow IfA/Hawaii

Sagan Summer Workshop - July 23-27, 2012

Outline

Planet Occurrence - what can we measure?

Planet-Metallicity Correlation
Doppler Surveys - Eta-Earth Survey
Transit Survey Completeness
Kepler Planet Occurrence

Outline

Planet Occurrence - what can we measure?

Planet-Metallicity Correlation

Doppler Surveys - Eta-Earth Survey

Transit Survey Completeness
Kepler Planet Occurrence

Planet Occurrence

Apparently simple measurement:

Number of Planets
 Occurrence =
 Number of Stars

Driven by Science Questions

High planet occurrence \rightarrow
planets of particular types

commonly

form and evolve
under particular conditions

Driven by Science Questions

High planet occurrence \rightarrow
planets of particular types

\{mass / radius / temp orbital characteristics degree of multiplicity

commonly

form and evolve
under particular conditions

Driven by Science Questions

High planet occurrence \rightarrow
planets of particular types

commonly

form and evolve

under particular conditions
initial conditions:
stellar mass
stellar metallicity
stellar multiplicity
implied disk properties

evolutionary conditions: planetary dynamics planet/disk dynamics star/planet interactions stellar evolution

Driven by Science Questions

High planet occurrence \rightarrow
planets of particular types commonly
difficult to disentangle formation and evolution
form and evolve
under particular conditions

Planet Distribution - Msini-Period

Exoplanet.eu:

- all planets
"RV+Astrometry"

Planet Distribution - Msini-Period

Exoplanet.eu:

- all planets
"RV+Astrometry"

Inferring Planet Formation Mechanisms from Planet Population Statistics

Measurements

Models

Exoplanet Distribution - Msini-Period

Exoplanets.org:
- all planets
RV+Transit

Exoplanet.eu: clearinghouse of planet claims

Exoplanets.org: curated orbit database

Exoplanet Distribution - Msini-Period

Exoplanets.org:

- RV-detected
- Transit-detected

Exoplanet Distribution - Msini-Period

Exoplanets.org:

- RV-detected

Exoplanet Distribution - Msini-Period

Exoplanets.org: RV-detected and:

- $M_{\text {star }}>0.6 M_{\text {sun }}$
- $M_{\text {star }}<0.6 M_{\text {sun }}$ (M dwarfs)

Exoplanet Distribution - Msini-Period

Exoplanets.org: RV-detected and:

- $M_{\text {star }}>0.6 M_{\text {sun }}$

Exoplanet Distribution - Msini-Period

Exoplanets.org: RV-detected,
$M_{\text {star }}>0.6 M_{\text {sun }}$ and:

- $M_{\text {star }}<1.2 M_{\text {sun }}$
- $M_{\text {star }}>1.2 M_{\text {sun }}$ (F dwarfs, subgiants, giants)

Exoplanet Distribution - Msini-Period

Exoplanets.org: RV-detected and:

- $M_{\text {star }}=0.6-1.2 M_{\text {sun }}$

Exoplanet Distribution - Msini-Period

Exoplanets.org: RV-detected and:

- $M_{\text {star }}=0.6-1.2 M_{\text {sun }}$

How do you compute?
$\frac{\# \text { of Planets }}{\# \text { of Stars }}$

Planet Occurrence

Apparently simple measurement requires careful treatment of numerator and denominator:

Number of Planets
Occurrence $=$
Number of Stars

Planet Occurrence

Apparently simple measurement requires careful treatment of numerator and denominator:

- Define planet parameters of measurement (M, R, P, e, etc.)
- Set planet detection threshold
- Incompleteness - correct for missed planets

Number of Planets
Occurrence $=$
Number of Stars

Planet Occurrence

Apparently simple measurement requires careful treatment of numerator and denominator:

Number of Planets
 Occurrence $=$
 Number of Stars

- Define stellar parameters of measurement (M, R, Fe/H, Teff, logg, etc.)
- Define planet parameters of measurement (M, R, P, e, etc.)
- Set planet detection threshold
- Incompleteness - correct for missed planets

Number of Planets
Occurrence $=$
Number of Stars

- Define stellar parameters of measurement (M, R, Fe/H, Teff, logg, etc.)

Pause

... questions so far?

- Define planet parameters of measurement (M, R, P, e, etc.)
- Set planet detection threshold
- Incompleteness - correct for missed planets

Number of Planets
Occurrence $=$
Number of Stars

- Define stellar parameters of measurement (M, R, Fe/H, Teff, logg, etc.)

Outline

Planet Occurrence - what can we measure?

Planet-Metallicity Correlation
Doppler Surveys - Eta-Earth Survey
Transit Survey Completeness
Kepler Planet Occurrence

Planet-Metallicity Correlation

Early Observation:
4/4 Jupiter host stars are iron-rich (Gonzalez et al. 1997)

Planet-Metallicity Correlation

Early Observation:
4/4 Jupiter host stars are iron-rich (Gonzalez et al. 1997)

Science Question:
Are jovian planets formed by core accretion, which depends critically on quickly accreting a ~ 10 Earth-mass core out of metals from the protoplanetary disk?

Planet-Metallicity Correlation

Early Observation:
4/4 Jupiter host stars are iron-rich (Gonzalez et al. 1997)
Science Question:
Are jovian planets formed by core accretion, which depends critically on quickly accreting a ~ 10 Earth-mass core out of metals from the protoplanetary disk?

Planet-Metallicity Correlation

Early Observation:
4/4 Jupiter host stars are iron-rich (Gonzalez et al. 1997)

Science Question:

Are jovian planets formed by core accretion, which depends critically on quickly accreting a ~ 10 Earth-mass core out of metals from the protoplanetary disk?

Statistical Question:
Are jovian planets more commonly found orbiting metalrich stars? What is the occurrence of jovian planets as a function of stellar metallicity?

Planet-Metallicity Correlation

Early Observation:
4/4 Jupiter host stars are iron-rich (Gonzalez et al. 1997)

Science Question:

Are jovian planets formed by core accretion, which depends critically on quickly accreting a ~ 10 Earth-mass core out of metals from the protoplanetary disk?

Statistical Question:
Are jovian planets more commonly found orbiting metalrich stars? What is the occurrence of jovian planets as a function of stellar metallicity?

Many responses:
Focus on Fischer \&Valenti (2005)

Measure [Fe/H] using Spectroscopy Made Easy (SME)

Valenti \& Fischer (2005) - measure stellar parameters (SME) Fischer \& Valenti (2005) - planet-metallicity correlation

Define the Sample

1040 nearby dwarfs and subgiants in planet search programs at Keck/Lick/AAT - nearly unbiased sample

Compute Planet Occurrence

- Define planet parameters of measurement (M, R, P, e, etc.)
- Set planet detection threshold
- Incompleteness - correct for missed planets

Number of Planets
Occurrence $=$
Number of Stars

- FGK dwarfs and subgiants - nearby; nearly unbiased (Hipparcos)

Compute Planet Occurrence

- Define planet parameters of measurement (M, R, P, e, etc.)
- Set planet detection threshold
- Incompleteness - correct for missed planets

Number of Planets
Occurrence $=$
Number of Stars

- FGK dwarfs and subgiants - nearby; nearly unbiased (Hipparcos)
- $[\mathrm{Fe} / \mathrm{H}]$ and other stellar params measured uniformly by SME

Compute Planet Occurrence

- Period <4 years, ~Jovian mass (depending on period)
- K > $30 \mathrm{~m} / \mathrm{s}$
- Assume 100\% planet detection completeness (reasonable)

Number of Planets
Occurrence =
Number of Stars

- FGK dwarfs and subgiants - nearby; nearly unbiased (Hipparcos)
- $[\mathrm{Fe} / \mathrm{H}]$ and other stellar params measured uniformly by SME

Planet-Metallicity Correlation

Fit to Model

Fit to Model

Fit to Model

Planet-Metallicity Correlation

Statistical Question:

Are jovian planets more commonly found orbiting metal-rich stars? What is the occurrence of jovian planets as a function of stellar metallicity?

Answer:

Yes, metal-rich stars are more commonly planet hosts. Jovian planet occurrence scales as the square of the number of iron atoms

Science Question:

Are jovian planets formed by core accretion, which depends critically on quickly accreting a ~ 10 Earth-mass core out of metals from the protoplanetary disk?

Answer:

The planet-metallicity correlation supports the core accretion mechanism, both qualitatively and quantitatively.

- Period < 4 years, ~Jovian mass (depending on period)
- K > $30 \mathrm{~m} / \mathrm{s}$
- Assume 100\% planet detection completeness (reasonable)

Number of Planets
Occurrence $=$
Number of Stars

- FGK dwarfs and subgiants - nearby; nearly unbiased (Hipparcos)
- $[\mathrm{Fe} / \mathrm{H}]$ and other stellar params measured uniformly by SME
- Period < 4 years, ~Jovian mass (depending on period)
- K > $30 \mathrm{~m} / \mathrm{s}$
- Assume 100% planet detection completeness (reasonable)

No incompleteness

Number of Planets

Occurrence $=$
Number of Stars

- FGK dwarfs and subgiants - nearby; nearly unbiased (Hipparcos)
- $[\mathrm{Fe} / \mathrm{H}]$ and other stellar params measured uniformly by SME
- Period < 4 years, ~Jovian mass (depending on period)
- K > $30 \mathrm{~m} / \mathrm{s}$
- Assume 100% planet detection completeness (reasonable)

No incompleteness

Number of Planets

Occurrence $=$
Number of Stars
Well-defined sample

- FGK dwarfs and subgiants - nearby; nearly unbiased (Hipparcos)
- $[\mathrm{Fe} / \mathrm{H}]$ and other stellar params measured uniformly by SME
- Period < 4 years, \sim Jovian mass (depending on period)
- K > $30 \mathrm{~m} / \mathrm{s}$
- Assume 100% planet detection completeness (reasonable)

No incompleteness

Number of Planets

Occurrence $=$
Number of Stars

... questions so far?

- Period <4 years, \sim Jovian mass (depending on period)
- K > $30 \mathrm{~m} / \mathrm{s}$
- Assume 100% planet detection completeness (reasonable)

No incompleteness

Number of Planets

Occurrence $=$
Number of Stars

Outline

Planet Occurrence - what can we measure?

Planet-Metallicity Correlation
Doppler Surveys - Eta-Earth Survey
Transit Survey Completeness
Kepler Planet Occurrence

NASA-UC Eta-Earth Program

RV survey of 238 nearby GKM dwarfs
Search for low-mass planets (Msini $=3-30 \mathrm{M}_{\text {Earth }}$)
Constrain population of low-mass planets and planet formation theory

39\% G stars
 33\% K stars
 28\% M stars

Statistically unbiased (nearly) stellar population:

- V < 11
- distance < 25 pc
- log R'HK < -4.7 (inactive)

NASA-UC Eta-Earth Program

RV survey of 238 nearby GKM dwarfs
Search for low-mass planets (Msini $=3-30 \mathrm{M}_{\text {Earth }}$)
Constrain population of low-mass planets and planet formation theory

39%
G stars
33%
K stars
28%

Statistically unbiased (nearly) stellar population:

- V < 11
- distance < 25 pc
- log R'HK < -4.7 (inactive)

NASA-UC Eta-Earth Program

RV survey of 238 nearby GKM dwarfs
Search for low-mass planets (Msini $=3-30 \mathrm{M}_{\text {Earth }}$)
Constrain population of low-mass planets and planet formation theory

39\% G stars
 33\% K stars
 28\% M stars

Statistically unbiased (nearly) stellar population:

- V < 11
- distance < 25 pc
- log R'HK < -4.7 (inactive)

NASA-UC Eta-Earth Program

RV survey of 238 nearby GKM dwarfs
Search for low-mass planets (Msini $=3-30 \mathrm{M}_{\text {Earth }}$)
Constrain population of low-mass planets and planet formation theory

39\% G stars
 33\% K stars
 28\% M stars

Statistically unbiased (nearly) stellar population:

- V < 11
- distance < 25 pc
- log R'HK < -4.7 (inactive)

HIRES Echelle Spectrum

HIRES Echelle Spectrum

lodine Absorption Cell

Histogram of stellar masses for Eta-Earth stars.

G \& K Main Sequence:
All have parallaxes \&
Stellar evolution Tracks

Median: 35 Keck RVs per star

All have high cadence run during 10 Keck nights

Stellar Metallicities

Stellar Activity - logR'нк

Unbiased Metallicity:

Volume-limited survey median $[\mathrm{Fe} / \mathrm{H}]=-0.04$

166 GK Stars in Eta-Earth Survey

Table S1. G and K-type Target Stars in the Eta-Earth

Name	Spec. Type	Mass $\left(\mathrm{M}_{\odot}\right)$	Num. Obs.
HD 1461	G0	1.08	154
HD 3651	K0	0.89	29
HD 3765	K2	0.84	35
HD 4256	K2	0.85	36
HD 4614	G0	0.99	30
HD 4614 B	K7	0.57	28
HD 4628	K2	0.72	49
HD 4747	G8	0.82	22
HD 4915	G0	0.90	37
HD 7924	K0	0.83	135
HD 9407	G6	0.98	97
HD 10476	K1	0.83	56
HD 10700	G8	0.95	133
HD 12051	G5	099	52
HD 12846	G2	0.88	36
HD 14412	G5	0.78	37
HD 16160	K3	0.76	47
HD 17230	K5	0.59	31
HD 18143	G5	0.90	35
HD 18803	G8	1.00	32
HD 19373	G0	1.20	47
HD 20165	K1	0.82	26
HD 20619	G1	0.91	35
HD 22879	F9	0.79	22
HD 23356	K2	0.78	22
HD 23439	K1	0.67	26
HD 24238	K0	0.73	29
HD 24496	G0	0.94	47
HD 25329	K1	0.83	34
HD 25665	G5	0.78	21

Table S1 - Continued

Name	Spec. Type	Mass (M M_{\odot})	Nem. Obs.
HD 172051	G5	0.87	28
HD 176377	90	0.92	32
HD 179957	04	1.01	39
HD 179958	04	1.03	38
HD 182488	G8	0.96	45
HD 182572	G8	1.14	27
HD 185144	K0	0.80	122
HD 185414	90	1.07	27
HD 186008	G1	1.07	35
HD 186427	63	099	44
HD 190067	G7	0.80	so
HD 190360	G6	1.01	45
HD 190404	K1	0.70	21
HD 190406	61	109	32
HD 191785	K1	0.83	22
HD 191408	K3	0.69	36
HD 192310	K0	0.82	45
HD 193202	KS	0.67	38
HD 196761	G8	0.83	27
HD 197076	Gs	099	86
HD 201091	K5	0.66	64
HD 201092	K7	0.54	62
HD 202751	K2	0.75	42
HD 204587	Ks	0.68	20
HD 208313	K0	0.80	23
HD 210277	90	1.01	49
HD 210302	F6	1.28	23
HD 213042	Ks	0.74	37
HD 215152	K0	0.78	27
HD 216520	K2	0.83	60
HD 216259	K0	0.69	so

Table S1-Continued

Name	Spec. Type	Mass (Mo)	Num, Obs.
HD 29883	K5	0.76	23
HD 321477	K3	0.83	52
HD 32923	G4	1.03	26
HD 34721	G0	1.12	21
HD 34411	G0	1.13	40
HD 360033	K5	0.73	42
HD 37008	K2	0.73	22
HD 38230	K0	0.83	24
HD 38858	G4	0.92	35
HD 40977	G0	0.92	23
HD 42618	G4	0.96	59
HD 45184	G2	1.04	46
HD 48662	G0	1.17	27
HD 50692	G0	1.00	37
HD 51419	G5	0.86	40
HD 51866	K3	0.78	32
HD 52711	G4	1.02	46
HD 55575	G0	1.26	32
HD 62613	G8	0.94	24
HD 65277	KS	0.72	21
HD 65583	G8	0.76	26
HD 68017	G4	0.85	43
HD 69830	K0	0.87	46
HD 72673	K0	0.78	23
HD 73667	K1	0.72	22
HD 75732	G8	0.91	96
HD 84035	KS	0.73	22
HD 84117	G0	1.15	22
HD 84737	G0	1.22	24
HD 86728	G3	1.08	28
HD 87883	K0	0.80	30

Table S1-Continued

Name	Spec. Type	Mass $\left(\mathrm{M}_{9}\right)$	Num. Obs.
HD 217014	G2	1.09	26
HD 217107	G8	1.10	41
HD 218868	K0	0.99	53
HD 219134	K3	0.78	74
HD 219548	K2	0.81	30
HD 219834 B	K2	0.82	24
HD 220339	K2	0.73	36
HD 21354	K2	0.85	79
HIP 18280	K7	0.59	22
HIP 19165	K4	0.70	21
HIP 41689	K7	0.62	20

Table S1-Continued

Name	Spec. Type	Mass (M)	Num, Obs.
HD 89269	G5	089	29
HD 90156	G5	0.90	28
HD 92719	G2	1.10	24
HD 95128	G1	108	22
HD 97101	K8	0.60	21
HD 9734	G8	0.89	35
HD 97658	K1	0.78	61
HD 98281	G8	0.85	46
HD 99491	K0	1.01	71
HD 99492	K2	0.86	47
HD 100180	co	1.10	24
HD 100623	ко	0.77	32
HD 109932	KS	0.76	44
HD 104304	G9	1.02	23
HD 109358	co	1.00	41
HD 110315	K2	0.70	37
HD 110897	co	1.23	29
HD 114613	G3	1.28	21
HD 114783	K0	0.86	45
HD 115617	G5	0.95	61
HD 116442	G5	0.76	25
HD 116443	Gs	0.73	55
HD 117176	G4	1.11	30
HD 120467	K4	0.71	20
HD 122064	K3	080	43
HD 122120	KS	0.71	36
HD 125455	K1	0.79	20
HD 126053	G1	0.86	30
HD 127334	G5	1.10	24
HD 130992	K3	0.71	36
HD 132142	K1	0.71	21

Table S1-Continued

Name	Spec. Type	Mass (M)	Num. Obs.
HD 136713	K2	0.84	79
HD 139323	K3	0.89	91
HD 140538 A	G2	1.06	58
HD 141004	co	1.14	68
HD 143761	co	1.00	29
HD 144579	68	0.75	30
HD 145675	ко	1.00	59
HD 145958 A	G8	091	44
HD 145958 B	K0	0.88	31
HD 146233	G2	102	52
HD 146362 B	G1	1.07	29
HD 148467	KS	0.67	22
HD 149806	K0	0.94	28
HD 151288	Ks	0.59	22
HD 151541	K1	0.83	29
HD 154088	G8	0.97	67
HD 154345	G8	0.88	53
HD 154363	Ks	0.64	25
HD 155712	K0	0.79	39
HD 15666	K2	0.77	93
HD 156985	K2	0.77	34
HD 157214	G0	091	25
HD 157347	GS	0.99	46
HD 158633	K0	0.78	20
HD 159062	G5	0.94	29
HD 159222	Gs	1.04	55
HD 161797	Gs	1.15	22
HD 164922	K0	0.94	50
HD 166620	K2	0.76	35
HD 168009	G2	102	24
HD 170493	K3	0.81	33

Standard Stars

The best standards have an RMS of $1.5-2.0 \mathrm{~m} / \mathrm{s}$.

These are almost always late G / early K dwarfs.

We do not explicitly average over P-modes; $\mathrm{T}_{\text {exp }}$ ~1-5 min

Standard Stars

The best standards have an RMS of 1.5-2.0 m/s.

These are almost always late G / early K dwarfs.

We do not explicitly average over P-modes; $\mathrm{T}_{\text {exp }}$ ~1-5 min

Minimum RV Observations for Eta-Earth Star

Minimum RV Observations for Eta-Earth Star

Minimum RV Observations for Eta-Earth Star

20+ observations over 4 years

Minimum RV Observations for Eta-Earth Star

20+ observations over 4 years

Precision of Eta-Earth Observations

Velocity RMS of Eta-Earth stars

Limited by:
Stellar jitter
Guiding
Inst. Stability
Photon Noise

HD 156668 - Discovery RVs

HD 156668 - High-pass Filtered RVs

Howard et al. 2011

HD 156668b - Detected Super-Earth!

Howard et al. 2011

33 Detected Planets in the Survey

Limits on Non-detections of Planets

Limits on Non-detections of Planets

Limits on Non-detections of Planets

Limits on Non-detections of Planets

Completeness

- Detected planets
\triangle Candidate planets (FAPs ~ I-5\%)

Candidate planets included in counting planets.

Howard et al. 2010, Science, 330, 653

- Detected planets
\triangle Candidate planets (FAPs ~ I-5\%)

Candidate planets included in counting planets.

Howard et al. 2010, Science, 330, 653

Msini $=300-1000 \mathrm{ME}_{\mathrm{E}}$

- 2 Detected planets
$\triangle 0$ Candidate planets

Howard et al. 2010, Science, 330, 653

Msini $=100-300 \mathrm{ME}_{\mathrm{E}}$

- 2 Detected planets
$\triangle 0$ Candidate planets

Howard et al. 2010, Science, 330, 653

Msini $=30-100 \mathrm{ME}$

- 2 Detected planets
$\triangle 0$ Candidate planets

Howard et al. 2010, Science, 330, 653

Msini $=10-30 M_{E}$

- 4 Detected planets
\triangle I Candidate planets

Howard et al. 2010, Science, 330, 653

Msini $=3-10 \mathrm{ME}_{\mathrm{E}}$

- 6 Detected planets
$\triangle 2$ Candidate planets

Howard et al. 2010, Science, 330, 653

Howard et al. 2010, Science, 330, 653

Key Result: Power-law Mass Distribution

Howard et al. 2010, Science, 330, 653

Key Result: Power-law Mass Distribution

Compute Errors assume binomial statistics scale missed planets w/det + cand

0.0
0.12
0.24

Key Result: Power-law Mass Distribution

Howard et al. 2010, Science, 330, 653
Compute Errors
assume binomial statistics
scale missed planets w/det + cand

$$
\begin{aligned}
& \mathrm{df} / \mathrm{d} \log M=\mathrm{kM} \mathrm{M}^{\alpha} \\
& \mathrm{k}=0.39^{+0.27}-0.16 \\
& \alpha=-0.48^{+0.12}-0.14
\end{aligned}
$$

Key Result: Occurrence rate of Super-Earths + Neptunes

Howard et al. 2010, Science, 330, 653

Key Result: Earth-mass Planets Common

Extrapolation of Power Law Model:

$\eta_{\text {Earth }}=23^{+16}{ }_{-10} \%$ for $M \sin i=0.5-2.0 M_{\mathrm{E}}, P<50$ days

Howard et al. 2010, Science, 330, 653

Howard et al. 2010, Science, 330, 653

I. Hot Neptunes rare

Msini=10-100 $\mathrm{M}_{\mathrm{E}}, \mathrm{P}<20$ days

Howard et al. 2010, Science, 330, 653

I. Hot Neptunes rare

Msini=10-100 ME, $\mathrm{P}<20$ days
2. Highest planet occurrence rate:

- Msini=10-30 $\mathrm{M}_{\mathrm{E}}, \mathrm{P}>\sim 20$ days
- Msini=3-10 ME, $P>\sim 5$ days

Howard et al. 2010, Science, 330, 653

I. Hot Neptunes rare

Msini=10-100 $\mathrm{ME}_{\mathrm{E}}, \mathrm{P}<20$ days
2. Highest planet occurrence rate:

- Msini=10-30 $\mathrm{M}_{\mathrm{E}}, \mathrm{P}>\sim 20$ days
- Msini=3-IO ME, P > ~5 days

3. Low-mass planets:

No short-period pileup

I. Hot Neptunes rare

Msini=10-100 ME, $P<20$ days
2. Highest planet occurrence rate:

- Msini=10-30 ME, $P>\sim 20$ days
- Msini=3-10 ME, $P>\sim 5$ days

3. Low-mass planets:

No short-period pileup
4. Low-mass planets:

Multi-planet systems common

Howard et al. 2010, Science, 330, 653

- Period < 50 days, Msini ≥ 3 Earth-masses
- Msini and period well-measured by Doppler signal
- Correct incompleteness with star-by-star analysis

Number of Planets
Occurrence $=$
Number of Stars

- GK dwarfs - nearby; nearly unbiased (Hipparcos)
- Period < 50 days, Msini ≥ 3 Earth-masses
- Msini and period well-measured by Doppler signal
- Correct incompleteness with star-by-star analysis

Significant incompleteness Number of Planets

Occurrence =
Number of Stars

- GK dwarfs — nearby; nearly unbiased (Hipparcos)
- Period < 50 days, Msini ≥ 3 Earth-masses
- Msini and period well-measured by Doppler signal
- Correct incompleteness with star-by-star analysis

Significant incompleteness Number of Planets

Occurrence =
Number of Stars

- GK dwarfs - nearby; nearly unbiased (Hipparcos)

Break

... questions?

- Period < 50 days, Msini ≥ 3 Earth-masses
- Msini and period well-measured by Doppler signal
- Correct incompleteness with star-by-star analysis

Significant incompleteness
 Number of Planets

Occurrence =
Number of Stars

