Survey Statistics (Planet Occurrence)

Andrew Howard UC Berkeley → IfA/Hawaii

Sagan Summer Workshop - July 23-27, 2012

2003 Michelson Interferometry Summer School

min

2003 Michelson Interferometry Summer School

Outline

Planet Occurrence - what can we measure?

Planet-Metallicity Correlation

Doppler Surveys - Eta-Earth Survey

Transit Survey Completeness

Kepler Planet Occurrence

Outline

Planet Occurrence - what can we measure?

Planet-Metallicity Correlation

Doppler Surveys - Eta-Earth Survey

Transit Survey Completeness

Kepler Planet Occurrence

Apparently simple measurement:

Occurrence = Number of Planets Number of Stars

High planet occurrence → planets of particular types commonly form *and* evolve under particular conditions

High planet occurrence → planets of particular types commonly

mass / radius / temp orbital characteristics degree of multiplicity

form and evolve

under particular conditions

High planet occurrence \rightarrow

planets of particular types

commonly

form and evolve

initial conditions: stellar mass stellar metallicity stellar multiplicity implied disk properties

under particular conditions

evolutionary conditions: planetary dynamics planet/disk dynamics star/planet interactions stellar evolution

Monday, July 23, 2012

High planet occurrence →
planets of particular types
commonly
form and evolve

under particular conditions

Inferring Planet Formation Mechanisms from Planet Population Statistics

Measurements

Models

Exoplanets.org:

• all planets RV+Transit

<u>Exoplanet.eu:</u> clearinghouse of planet claims

<u>Exoplanets.org:</u> curated orbit database

Exoplanets.org:

- RV-detected
- Transit-detected

Exoplanets.org:RV-detected

Exoplanets.org: RV-detected and:

- $M_{star} > 0.6 M_{sun}$
- $M_{star} < 0.6 M_{sun}$ (M dwarfs)

Exoplanets.org: RV-detected and:

• $M_{star} > 0.6 M_{sun}$

Exoplanets.org: RV-detected, M_{star} > 0.6 M_{sun} and: M_{star} < 1.2 M_{sun} M_{star} > 1.2 M_{sun} (F dwarfs, subgiants, giants)

<u>Exoplanets.org:</u> RV-detected and:

• M_{star} =0.6-1.2 M_{sun}

Exoplanets.org: RV-detected and:

• M_{star} =0.6-1.2 M_{sun}

How do you compute?

Apparently simple measurement requires careful treatment of numerator and denominator:

Occurrence = Number of Planets Number of Stars

Apparently simple measurement requires careful treatment of numerator and denominator:

Apparently simple measurement requires careful treatment of numerator and denominator:

Pause

... questions so far?

Outline

Planet Occurrence - what can we measure?

Planet-Metallicity Correlation

Doppler Surveys - Eta-Earth Survey

Transit Survey Completeness

Kepler Planet Occurrence

Early Observation:

4/4 Jupiter host stars are iron-rich (Gonzalez et al. 1997)

Early Observation:

4/4 Jupiter host stars are iron-rich (Gonzalez et al. 1997)

Science Question:

Are jovian planets formed by core accretion, which depends critically on quickly accreting a ~ 10 Earth-mass core out of metals from the protoplanetary disk?

Early Observation:

4/4 Jupiter host stars are iron-rich (Gonzalez et al. 1997)

Science Question:

Are jovian planets formed by core accretion, which depends critically on quickly accreting a ~ 10 Earth-mass core out of metals from the protoplanetary disk?

Core Accretion

Early Observation:

4/4 Jupiter host stars are iron-rich (Gonzalez et al. 1997)

Science Question:

Are jovian planets formed by core accretion, which depends critically on quickly accreting a ~ 10 Earth-mass core out of metals from the protoplanetary disk?

Statistical Question:

Are jovian planets more commonly found orbiting metalrich stars? What is the occurrence of jovian planets as a function of stellar metallicity?

Early Observation:

4/4 Jupiter host stars are iron-rich (Gonzalez et al. 1997)

Science Question:

Are jovian planets formed by core accretion, which depends critically on quickly accreting a ~ 10 Earth-mass core out of metals from the protoplanetary disk?

Statistical Question:

Are jovian planets more commonly found orbiting metalrich stars? What is the occurrence of jovian planets as a function of stellar metallicity?

Many responses: Focus on Fischer & Valenti (2005)

Measure [Fe/H] using Spectroscopy Made Easy (SME)

Valenti & Fischer (2005) — measure stellar parameters (SME) Fischer & Valenti (2005) — planet-metallicity correlation

Define the Sample

1040 nearby dwarfs and subgiants in planet search programs at Keck/Lick/AAT — nearly unbiased sample

Compute Planet Occurrence

Compute Planet Occurrence

Compute Planet Occurrence

Planet-Metallicity Correlation

Fit to Model

Fit to Model

Fit to Model

Planet-Metallicity Correlation

Statistical Question:

Are jovian planets more commonly found orbiting metal-rich stars? What is the occurrence of jovian planets as a function of stellar metallicity?

Answer:

Yes, metal-rich stars are more commonly planet hosts. Jovian planet occurrence scales as the square of the number of iron atoms

Science Question:

Are jovian planets formed by core accretion, which depends critically on quickly accreting a ~10 Earth-mass core out of metals from the protoplanetary disk?

Answer:

The planet-metallicity correlation supports the core accretion mechanism, both qualitatively and quantitatively.

• [Fe/H] and other stellar params measured uniformly by SME

Pause

... questions so far?

Outline

Planet Occurrence - what can we measure?

Planet-Metallicity Correlation

Doppler Surveys - Eta-Earth Survey

Transit Survey Completeness

Kepler Planet Occurrence

RV survey of 238 nearby GKM dwarfs Search for low-mass planets (Msini = 3-30 M_{Earth}) Constrain population of low-mass planets and planet formation theory

39% G stars33% K stars28% M stars

Statistically unbiased (nearly) stellar population:

- V < 11
- distance < 25 pc
- log R'HK < -4.7 (inactive)

RV survey of 238 nearby GKM dwarfs Search for low-mass planets (Msini = 3-30 M_{Earth}) Constrain population of low-mass planets and planet formation theory

G stars

39%	G stars
33%	K stars
28%	M stars

Statistically unbiased (nearly) stellar population:

- V < 11
- distance < 25 pc
- log R'HK < -4.7 (inactive)

RV survey of 238 nearby GKM dwarfs Search for low-mass planets (Msini = 3-30 M_{Earth}) Constrain population of low-mass planets and planet formation theory

RV survey of 238 nearby GKM dwarfs Search for low-mass planets (Msini = 3-30 M_{Earth}) Constrain population of low-mass planets and planet formation theory

HIRES Echelle Spectrum

Monday, July 23, 2012

HIRES Echelle Spectrum

Iodine Absorption Cell

G & K Main Sequence: All have parallaxes & Stellar evolution Tracks

Histogram of stellar masses for Eta-Earth stars.

Median: 35 Keck RVs per star

All have high cadence run during 10 Keck nights

Histogram of number of RV measurements per Eta-Earth star.

Stellar Metallicities

Unbiased Metallicity:

Volume-limited survey median [Fe/H] = -0.04

Stellar Activity – logR'HK

<u>Activity:</u> logR'_{HK} < -4.7

166 GK Stars in Eta-Earth Survey

Table S1. G and K-type Target Stars in the Eta-Earth

Table S1-Continued

_

Table S1-Continued

Table S1-Continued

Name	Spec. Type	Mass (M _☉)	Num. Obs.
HD 1461	G0	1.08	154
HD 3651	KO	0.89	29
HD 3765	K2	0.84	35
HD 4256	K2	0.85	36
HD 4614	GO	0.99	30
HD 4614 B	K7	0.57	28
HD 4628	K2	0.72	49
HD 4747	G8	0.82	22
HD 4915	GO	0.90	37
HD 7924	KO	0.83	135
HD 9407	G6	0.98	97
HD 10476	K1	0.83	56
HD 10700	G8	0.95	133
HD 12051	G5	0.99	52
HD 12846	G2	0.88	36
HD 14412	G5	0.78	37
HD 16160	K3	0.76	47
HD 17230	K5	0.69	31
HD 18143	G5	0.90	35
HD 18803	G8	1.00	32
HD 19373	G0	1.20	47
HD 20165	K1	0.82	26
HD 20619	G1	0.91	35
HD 22879	F9	0.79	22
HD 23356	K2	0.78	22
HD 23439	K1	0.67	26
HD 24238	KO	0.73	29
HD 24496	GO	0.94	47
HD 25329	K1	0.83	34
HD 25665	G5	0.78	21

Name	Spec. Type	Mass (M _☉)	Num. Obs.		
HD 29883	K5	0.76	23		
HD 32147	K3	0.83	52		
HD 32923	G4	1.03	26		
HD 34721	GO	1.12	21		
HD 34411	GO	1.13	-40		
HD 36003	K5	0.73	42		
HD 37008	K2	0.73	22		
HD 38230	KO	0.83	24		
HD 38858	G4	0.92	35		
HD 40397	GO	0.92	23		
HD 42618	G4	0.96	59		
HD 45184	G2	1.04	46		
HD 48682	GO	1.17	27		
HD 50692	GO	1.00	37		
HD 51419	G5	0.86	40		
HD 51866	K3	0.78	32		
HD 52711	G4	1.02	46		
HD 55575	GO	1.26	32		
HD 62613	G8	0.94	24		
HD 65277	K5	0.72	21		
HD 65583	G8	0.76	26		
HD 68017	G4	0.85	43		
HD 69830	KO	0.87	46		
HD 72673	KO	0.78	23		
HD 73667	K1	0.72	22		
HD 75732	G8	0.91	96		
HD 84035	K5	0.73	22		
HD 84117	GO	1.15	22		
HD 84737	GO	1.22	24		
HD 86728	G3	1.08	28		
HD 87883	KO	0.80	30		

Name	Spec. Type	Mass (M⊙)	Num. Obs.	Name	Spec. Type	$Mass(M_\odot)$	Num. Obs.
HD 89269	G5	0.89	29	HD 136713	K2	0.84	79
HD 90156	G5	0.90	28	HD 139323	K3	0.89	91
HD 92719	G2	1.10	24	HD 140538 A	G2	1.06	58
HD 95128	G1	1.08	22	HD 141004	G0	1.14	68
HD 97101	K8	0.60	21	HD 143761	G0	1.00	29
HD 97343	G8	0.89	35	HD 144579	G8	0.75	30
HD 97658	K1	0.78	61	HD 145675	KO	1.00	59
HD 98281	G8	0.85	46	HD 145958 A	G8	0.91	44
HD 99491	KO	1.01	71	HD 145958 B	KO	0.88	31
HD 99492	K2	0.86	47	HD 146233	G2	1.02	52
HD 100180	G0	1.10	24	HD 146362 B	G1	1.07	29
HD 100623	KO	0.77	32	HD 148467	K5	0.67	22
HD 103932	K5	0.76	44	HD 149806	KO	0.94	28
HD 104304	G9	1.02	23	HD 151288	K5	0.59	22
HD 109358	GO	1.00	41	HD 151541	K1	0.83	29
HD 110315	K2	0.70	37	HD 154088	G8	0.97	67
HD 110897	G0	1.23	29	HD 154345	GS	0.88	53
HD 114613	G3	1.28	21	HD 154363	K.5	0.64	25
HD 114783	KO	0.86	45	HD 155712	KO	0.79	39
HD 115617	GS	0.95	61	HD 156668	K2	0.77	93
HD 116442	GS	0.76	25	HD 156985	K2	0.77	34
HD 116443	GS	0.73	55	HD 157214	GO	0.91	25
HD 117176	G4	1.11	30	HD 157347	G5	0.99	-46
HD 120467	KA	0.71	20	HD 158633	KO	0.78	20
HD 122064	K3	0.80	43	HD 159062	G5	0.94	29
HD 122004	KS.	0.30	26	HD 159222	G5	1.04	55
HD 125455	K1	0.79	20	HD 161797	G5	1.15	22
HD 125455	C1	0.75	20	HD 164922	KO	0.94	50
HD 120033	GI	0.80	30	HD 166620	K2	0.76	35
HD 12/334	05	0.77	26	HD 168009	G2	1.02	24
HD 130992	K.1	0.77	30	HD 170493	K3	0.81	33
111111111111111		11.11	- C I				

Table S1-Continued

Spec. Type

G5

G0

G4

G4

G8

G8

K0

G0

G1

G3

G7

G6

K1

GI

K1

K3

K0

K5

G8

G5

K5

K7

K2

K5

K0

G0

F6

KS

K0

K2

K0

Mass (M_®)

0.87

0.92

1.01

1.03

0.96

1.14

0.80

1.07

1.07

0.99

0.80

1.01

0.70

1.09 0.83

0.69

0.82

0.67

0.83

0.99

0.66

0.54

0.75

0.68

0.80

1.01

1.28

0.74

0.78

0.83

0.69

Num. Obs.

28

32

39

38

45

27

122

27

35

44

50

45

21 32

36 45

38 27

86

64

62

42

20 23 49

23 37 27

60

50

Name

HD 172051

HD 176377

HD 179957

HD 179958

HD 182488

HD 182572

HD 185144

HD 185414

HD 186408

HD 186427

HD 190067

HD 190360

HD 190404

HD 190406

HD 191785

HD 191408

HD 192310

HD 193202

HD 196761

HD 197076

HD 201091

HD 201092

HD 202751

HD 204587

HD 208313

HD 210277

HD 210302

HD 213042

HD 215152

HD 216520

HD 216259

Table S1-Continued

Name	Spec. Type	Mass (M _☉)	Num. Obs.
HD 217014	G2	1.09	26
HD 217107	G8	1.10	41
HD 218868	KO	0.99	53
HD 219134	K3	0.78	74
HD 219538	K2	0.81	30
HD 219834 B	K2	0.82	24
HD 220339	K2	0.73	36
HD 221354	K2	0.85	79
HIP 18280	K7	0.59	22
HIP 19165	K4	0.70	21
HIP 41689	K7	0.62	20

Standard Stars

The best standards have an RMS of 1.5-2.0 m/s.

These are almost always late G / early K dwarfs.

We do not explicitly average over P-modes; T_{exp} ~ 1-5 min

Standard Stars

The best standards have an RMS of 1.5-2.0 m/s.

These are almost always late G / early K dwarfs.

We do not explicitly average over P-modes; $T_{exp} \sim 1-5$ min

HD 191785

HD 191785

HD 191785

20+ observations over 4 years

20+ observations over 4 years

Precision of Eta-Earth Observations

HD 156668 - Discovery RVs -(a) **Unfiltered RVs** 10 Velocity (m s⁻¹) 5 L -10 $RMS = 2.71 \text{ m s}^{-1}$ Time (Yr) 2005 2010 **Unfiltered RVs** (e) 20

HD 156668b - Detected Super-Earth!

Howard et al. 2011

Monday, July 23, 2012
Planet	Star	Period (d)	$M\sin i (M_{\oplus})$	Reference
14 Her b	HD 145675	1754	1651	(15)
16 Cyg b	HD 186427	798	521	(15)
47 UMa b	HD 95128	1090	826	(16)
47 UMa c	HD 95128	2590	252	(16)
51 Peg b	HD 217014	4.2	147	(17)
55 Cnc b	HD 75732	14.7	264	(18)
55 Cnc c	HD 75732	44.4	53.4	(18)
55 Cnc d	HD 75732	5371	1241	(18)
55 Cnc e	HD 75732	2.8	7.6	(18)
55 Cnc f	HD 75732	261	46.3	(18)
61 Vir b	HD 115617	4.2	5.1	(19)
61 Vir c	HD 115617	38.0	11	(19)
61 Vir d	HD 115617	123	23	(19)
70 Vir b	HD 117176	116	2372	(20)
HD 1461 b	HD 1461	5.8	8	(21)
HD 3651 b	HD 3651	62.2	72.8	(22)
HD 7924 b	HD 7924	5.5	9.3	(6)
HD 69830 b	HD 69830	8.7	10.2	(23)
HD 69830 c	HD 69830	31.6	11.9	(23)
HD 69830 d	HD 69830	197	17.9	(23)
HD 87883 b	HD 87883	2754	558	(24)
HD 90156 b	HD 90156	49.6	16.7	(25)
HD 99492 b	HD 99492	17.0	33.7	(15)
HD 114783 b	HD 114783	493	351	(26)
HD 154345 b	HD 154345	3341	304	(27)
HD 156668 b	HD 156668	4.6	4.1	(28)
HD 164922 b	HD 164922	1155	114	(15)
HD 190360 b	HD 190360	2915	497	(29)
HD 190360 c	HD 190360	17.1	18.7	(29)
HD 210277 b	HD 210277	442	405	(15)
HD 217107 b	HD 217107	7.1	443	(30)
HD 217107 c	HD 217107	4270	831	(30)
p CrB b	HD 143761	39.8	338	(15)

33 Detected Planets in the Survey

- Some found by others; confirmed here
- Firm Period, Msini
- All published

Completeness

Monday, July 23, 2012

 Detected planets
 Candidate planets (FAPs ~ I-5%)

> Candidate planets included in counting planets.

 Detected planets
 Candidate planets (FAPs ~ I-5%)

> Candidate planets included in counting planets.

Candidate planets included in counting planets.

Candidate planets included in counting planets.

Msini = 300-1000 M_E

- 2 Detected planets
- A 0 Candidate planets

Key Result: Power-law Mass Distribution

Howard et al. 2010, Science, 330, 653

Key Result: Power-law Mass Distribution

 $\frac{Compute Errors}{assume binomial statistics} scale missed planets w/det + cand$ $0.01 \int_{0.00}^{0} \frac{1}{0.00} \int_{0.12}^{0.24} \frac{1}{0.24}$

Howard et al. 2010, Science, 330, 653

Key Result: Power-law Mass Distribution

Key Result: Occurrence rate of Super-Earths + Neptunes

Howard et al. 2010, Science, 330, 653

Key Result: Earth-mass Planets Common

I. Hot Neptunes rare Msini=10-100 M_E, P < 20 days</p>

I. Hot Neptunes rare Msini=10-100 M_E, P < 20 days</p>

2. Highest planet occurrence rate:

• Msini=10-30 M_E , P > ~20 days

```
• Msini=3-10 M<sub>E</sub>, P > \sim 5 days
```



```
I. Hot Neptunes rare
Msini=10-100 M<sub>E</sub>, P < 20 days</p>
```

- 2. Highest planet occurrence rate:
 - Msini=10-30 M_E, P > \sim 20 days
 - Msini=3-10 M_E, P > \sim 5 days
- 3. Low-mass planets: No short-period pileup

Howard et al. 2010, Science, 330, 653

- I. Hot Neptunes rare Msini=10-100 M_E, P < 20 days</p>
- 2. Highest planet occurrence rate:
 - Msini=10-30 M_E, P > \sim 20 days
 - Msini=3-10 M_E, P > \sim 5 days
- 3. Low-mass planets: No short-period pileup
- 4. Low-mass planets: Multi-planet systems common

Break

... questions?

