### Survey Statistics (Planet Occurrence)

#### Andrew Howard UC Berkeley → IfA/Hawaii

Sagan Summer Workshop - July 23-27, 2012

Outline

Planet Occurrence - what can we measure?

Planet-Metallicity Correlation

Doppler Surveys - Eta-Earth Survey

Transit Survey Completeness

Kepler Planet Occurrence

### Ground-based Transit Surveys



# Ground-based Transit Surveys

### Ground-based Transit Surveys









 $S/N_{transit} = \frac{\text{depth}}{\sqrt{\frac{1}{n^2} \sum_{i,j} \text{cov}[i;j]}}$  $= \frac{\text{depth}}{\sqrt{\frac{\sigma^2}{n} + \frac{1}{n^2} \sum_{i \neq j} \text{cov}[i;j]}}$ 

Red+white noise

Red+white noise  $S/N_{transit} = \frac{depth}{\sqrt{\frac{1}{n^2} \sum_{i,j} cov[i; j]}} = \frac{depth}{\sqrt{\frac{\sigma^2}{n} + \frac{1}{n^2} \sum_{i \neq j} cov[i; j]}}$ 

$$S/N_{transit} = \sqrt{\frac{(\text{depth} \cdot n)^2}{\sum_{k=1}^{N_{tr}} \left[n_k^2 \left(\frac{\sigma_w^2}{n_k} + \sigma_r^2\right)\right]}},$$

Red+white noise  $S/N_{transit} = \frac{\text{depth}}{\sqrt{\frac{1}{n^2} \sum_{i,j} \text{cov}[i;j]}} = \frac{\text{depth}}{\sqrt{\frac{\sigma^2}{n} + \frac{1}{n^2} \sum_{i \neq j} \text{cov}[i;j]}}$ 

total number of data points

$$S/N_{transit} = \sqrt{\frac{(\text{depth} \cdot n)^2}{\sum_{k=1}^{N_{tr}} \left[n_k^2 \left(\frac{\sigma_w^2}{n_k} + \sigma_r^2\right)\right]}},$$

 $S/N_{transit} = \frac{\text{depth}}{\sqrt{\frac{1}{n^2} \sum_{i,j} \text{cov}[i;j]}}$  $= \frac{\text{depth}}{\sqrt{\frac{\sigma^2}{n} + \frac{1}{n^2} \sum_{i \neq j} \text{cov}[i;j]}}$ 

total number of data points



von Braun et al. (2009); Pont et al. (2006)

Red+white noise

 $S/N_{transit} = \frac{\text{depth}}{\sqrt{\frac{1}{n^2} \sum_{i,j} \text{cov}[i;j]}}$  $= \frac{\text{depth}}{\sqrt{\frac{\sigma^2}{n} + \frac{1}{n^2} \sum_{i \neq j} \text{cov}[i;j]}}$ 

total number of data points



von Braun et al. (2009); Pont et al. (2006)

Red+white noise

Red+white noise  $S/N_{transit} = \frac{\text{depth}}{\sqrt{\frac{1}{n^2} \sum_{i,j} \text{cov}[i; j]}}$  $= \frac{\text{depth}}{\sqrt{\frac{\sigma^2}{n} + \frac{1}{n^2} \sum_{i \neq j} \text{cov}[i; j]}}$ 

total number of data points



What is the detection efficiency of a transit survey given:

- $\sigma_w$  (white noise)
- $\sigma_r$  (red noise)
- night length
- run duration

Requiring 2+ transits

#### Transit Detection Efficiency: Effect of Red Noise

![](_page_15_Figure_1.jpeg)

### Transit Detection Efficiency: Effect of White Noise

![](_page_16_Figure_1.jpeg)

von Braun et al. (2009)

#### Transit Detection Efficiency: Effect of Run Length

![](_page_17_Figure_1.jpeg)

### Transit Detection Efficiency: Effect of Night Length

![](_page_18_Figure_1.jpeg)

#### Transit Detection Efficiency: Effect of Cadence

![](_page_19_Figure_1.jpeg)

#### Transit Detection Efficiency: Effect of N<sub>transits</sub>

![](_page_20_Figure_1.jpeg)

#### Transit Detection Efficiency: Effect of depth

![](_page_21_Figure_1.jpeg)

#### Transit Detection Efficiency: Effect of transit duration

![](_page_22_Figure_1.jpeg)

#### Transit Detection Efficiency: Space Mission

von Braun et al. (2009)

![](_page_23_Figure_1.jpeg)

Monday, July 23, 2012

Outline

Planet Occurrence - what can we measure?

Planet-Metallicity Correlation

Doppler Surveys - Eta-Earth Survey

Transit Survey Completeness

Kepler Planet Occurrence

### Pre-Kepler Transiting Planets - 2009

![](_page_25_Figure_1.jpeg)

### Kepler Candidates as of June 2010

![](_page_26_Figure_1.jpeg)

### Kepler Candidates as of February 1, 2011

![](_page_27_Figure_1.jpeg)

#### **Compute Occurrence**

![](_page_28_Figure_1.jpeg)

#### **Compute Occurrence**

![](_page_29_Figure_1.jpeg)

#### **Compute Occurrence**

![](_page_30_Figure_1.jpeg)

![](_page_31_Figure_0.jpeg)

Howard et al. (2012)

#### **Computing Occurrence**

![](_page_32_Figure_1.jpeg)

### **Computing Occurrence**

![](_page_33_Figure_1.jpeg)

![](_page_34_Figure_0.jpeg)

Monday, July 23, 2012

#### Detection Completeness SNR > 10 in 90-day quarter

![](_page_35_Figure_1.jpeg)








#### For each detected planet, we know: $p_{transit} = R_{\star}/a$ - transit probability





## **Probability of Transit = R**<sub>∗</sub>/a

#### For each detected planet, we know:

 $P_{\text{transit}} = R_{*}/a$  - transit probability

N☆

 number of stars around which that planet could have been detected with SNR > 10



#### For each detected planet, we know:

- $P_{\text{transit}} = R_{*}/a$  transit probability
- N★

 number of stars around which that planet could have been detected with SNR > 10



For each detected planet there are actually 1/p<sub>transit</sub> planets in all orbital inclinations orbiting n<sub>★</sub> stars (augment detected planets)

#### For each detected planet, we know:

- $P_{transit} = R_{*}/a$  transit probability
- N☆

 number of stars around which that planet could have been detected with SNR > 10



For each detected planet there are actually 1/p<sub>transit</sub> planets in all orbital inclinations orbiting n<sub>★</sub> stars (augment detected planets)











## Kepler Occurrence



### Compute Occurrence vs. Planet Radius

Sum Occurrence for all Periods in R +  $\Delta$ R



### **Planet Radius Distribution**



### Planet Occurrence vs. Orbital Period





#### **Power Law**













### Planet Occurrence vs. Stellar Temperature



### Planet Occurrence vs. M\*



### **Planet Densities**



### **Planet Densities**



#### Planet Mass Distribution Eta-Earth Survey (*Doppler*)

Howard et al. (2010)



#### Planet Radius Distribution Kepler





$$k = 2.9 \pm 0.5, \alpha = -1.92 \pm 0.11$$

### Planet Densities





### Planet Densities

Monday, July 23, 2012

Howard et al. (2012)



Monday, July 23, 2012

#### Face Value Conclusions:

- On average, planets smaller than ~3 R<sub>E</sub> have bulk densities ≥ 4 g cm<sup>-3</sup>
- Terrestrial composition ?!

#### **Complications:**

- Multiple planets per system
- Different stellar samples?
- Not one-to-one mapping from radius to mass



# Summary: Planet Occurrence



### Questions?
## Extra slides

#### Patterns of Planet Occurrence Reveal Mechanisms of Planet Formation:

#### I. Population synthesis models incorrectly predicted planet desert new physics needed in model?

better models of migration & planet-planet interactions needed? in situ formation ("migration then assembly") ?

#### 2. Planet radius distribution

small planets are more common limited by 35% errors in stellar radii precise  $R_{\star}$  will reveal details of  $R_p$  distribution

#### 3. Planet period distribution

planet occurrence increases with orbital distance (per  $\log P$ ) parking distance varies with planet size

#### 4. Planet occurrence vs. stellar mass

occurrence of close-in sub-Neptune planets decreases with  $M_{\star}$  jovian planet occurrence (out to ~2AU) has opposite trend

signature of migration, formation, something else?















# HARPS





HARPS





HARPS + CORALIE Volume-limited Survey Mayor et al. (2011)





Howard et al. (2010) Mayor et al. (2011)







