Planetary Dynamics: From Birth to Death

Kaitlin M. Kratter

ITC Harvard-Smithsonian Center for Astrophysics
Sagan Workshop, July 2012

Goals

1) Provide an overview of role of dynamics in formation and evolution of the systems you will observe
2) Provide basic tools to help analyze and validate new systems
3) Keep theory in mind in choosing project and writing papers*

Outline

- Quantifying the dynamical influence of a planet
- How dynamics shape planetary growth
- Stability of multi-planet systems $(2,>3)$
- Stability of binary (multi) planetary systems
- The dynamical fate of planets after stellar evolution

Who's in Charge: The Hill Radius

- Def: Where the Planet's Gravity Dominates over Tidal gravity due to the star

$$
\begin{aligned}
\frac{G M_{p}}{\Delta R^{2}} & \approx \frac{G M_{*}}{a^{3}} \Delta R \\
\Delta R \rightarrow R_{H} & \approx\left(\frac{M_{p}}{M_{*}}\right)^{1 / 3} a
\end{aligned}
$$

Hill Radius

$$
R_{H}=\left(\frac{m_{p}}{3 M_{*}}\right)^{1 / 3} a
$$

Dimensionless planet(esimal) size

$$
\psi \equiv \frac{r_{p}}{R_{H}}=\left(\frac{3 \rho_{*}}{\rho_{p}}\right)^{1 / 3} \frac{R_{*}}{a}
$$

Roche Radius/Limit: size of a body that will be tidally disrupted

Roche Lobe: defined by equipotential surfaces, more appropriate for $\mu \sim 1$

Part I: Birth

Proplyd (credit: Hubble)

Solar System (e.g. Nice Model)

Core Accretion Theory of Planet Formation

- Step 1: Planetesimal formation via coagulation, collisions, gravitational instability of solids: from $\mu \mathrm{m}$ - km (100 km?)

- Step 2: Terrestrial planet growth via gravity assisted collisional accretion: from ~km to Earth mass cores

- Step 3: Core Accretion: Solid cores gather gas until disk disappears
- Step 4: Migration and Scattering (in/out) to new location within stellar system

Dynamics-Driven

 Gore Accretion Theory of Planet Formation- Step 1: Planetesimal formation via coagulation, collisions, gravitational instability of solids: from $\mu \mathrm{m}$ - km (100 km?)

- Step 2: Terrestrial planet growth via gravity assisted collisional accretion: from $\sim \mathrm{km}$ to Earth mass cores

- Step 3: Core Accretion: Solid cores gather gas until disk disappears
- Step 4: Migration and Scattering (in/out) to new location within stellar system

Dynamics in Planetesimal Growth

Armitage 2010

- Compare to Hill velocity:

$$
v_{H}=\Omega R_{H}=\left(\frac{m_{p}}{3 M_{*}}\right)^{1 / 3} v_{K}
$$

[^0]- Growth rates depend on the relative velocities within the disk:
- heating: scattering, collisions, fragmentation
consider finding better
- cooling: d friction, cc direct collision cross section lower than gravitational effects

$$
\sigma_{\mathrm{rel}}<
$$

From Planetesimals to Protoplanets

- Growth depends on location, velocity dispersion, mass, surface density
- Larger planetesimals grow fast due to gravitational focusing / dynamical friction
- Large bodies stir small ones
- Large bodies compete with each other repel to separations of $\sim 5 \mathrm{R}_{\mathrm{H}}$
- Eventually leads to well-known Oligarchic Growth where smaller proto-planets grow faster
$\left(\right.$ Kokuba \& Ida, 2000) ${ }^{\alpha[\mathrm{AU}]}$

The end of growth: Isolation Mass

- Protoplanet can only feed from a limited zone comparable to Hill radius
- Not a runaway process because feeding zone increases more slowly than mass
- Simulations show $C \sim 3.5$

$$
M_{\mathrm{iso}}=4 \pi a \cdot C\left(\frac{M_{\mathrm{iso}}}{3 M_{*}}\right)^{1 / 3} a \cdot \Sigma_{p}
$$

most

The end of growth: Isolation Mass

- Protoplanet ce from a limited comparable to
- Not a runawa because feedi increases mor than mass
- Simulations st

Part II: Planetary System Architecture

Candidate Multi-Planet Systems

Multi-Planet Stability: Restricted 3 body problem

- Two massive bodies in orbit generate a potential in which test particles move
- Equation of motion are simple in dimensionless coordinates, in the rotating frame
- There is one integral of motion, known as the Jacobi constant
- Explore orbital behavior using zero

$$
C_{J}=n^{2}\left(x^{2}+y^{2}\right)+2\left(\frac{\mu_{1}}{r_{1}}+\frac{\mu_{2}}{r_{2}}\right)-\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)
$$ velocity curves, and Poincare surface of section

- Planetary limit, curves at L1 open when:

$$
\Delta>3.5 R_{H}
$$

Multi-Planet Stability: Restricted 3 body problem

- Two massive bodies in orbit generate a potential in which test particles move
- Equation of motion are simple in dimensionless coordinates, in the rotating frame
- There is one integral of motion, known as the Jacobi constant
- Explore orbital behavior using zero velocity curves, and Poincare surface of section
- Planetary limit, curves at L1 open when:
$\Delta>3.5 R_{H}$

$C>C_{J}\left(L_{1}\right)$

$C_{J}\left(L_{3}\right)<C<C_{J}\left(L_{2}\right)$

$C_{J}\left(L_{2}\right)<C<C_{J}\left(L_{1}\right)$

Alessi 2011

Multi-Planet Stability: Restricted 3 body problem

- Two massive bodies in orbit generate a potential in which test particles move
- Equation of motion are simple in dimensionless coordinates, in the rotating frame
- There is one integral of motion, known as the Jacobi constant
- Explore orbital behavior using zero velocity curves, and Poincare surface of section
- Planetary limit, curves at L1 open when:
$\Delta>3.5 R_{H}$

$C>C_{J}\left(L_{1}\right)$

$C_{J}\left(L_{3}\right)<C<C_{J}\left(L_{2}\right)$

$C_{J}\left(L_{2}\right)<C<C_{J}\left(L_{1}\right)$

Alessi 2011
isolation mass!

Stability of Two Planet Systems (3 body problem)

- Lagrange Stable: Semi-major axes are bounded
- Hill Stable: No close interactions allowed

Topological Stability in the (general) three body problem:

$$
L^{2} E>\left(L^{2} E\right)_{\mathrm{crit}}
$$

- initial conditions dictate stability for all time
- equivalent of zero-velocity curves in restricted three-body problem (not as easily visualized)
- useful to define mutual Hill Radius:

$$
R_{H}^{\prime}=\left(\frac{\mu_{1}+\mu_{2}}{3}\right)^{1 / 3} \frac{\left(a_{1}+a_{2}\right)}{2}
$$

Stability of Multi Planet Systems: Two Close Planets

- Compute the critical value in terms of $L^{2} E$ for circular two planets:

$$
\begin{gathered}
\Delta \approx 2.4\left(\mu_{1}+\mu_{2}\right)^{1 / 3} \\
\mu_{1}=\mu_{2} \rightarrow \Delta \approx 3 \mu^{1 / 3} \\
G=1, \mu=m_{p} / m_{*}, a_{1}=1, e=0, i=0
\end{gathered}
$$

- Non-circular orbits:

$$
\Delta^{2}>12+4 / 3\left(\frac{\mu_{1}+\mu_{2}}{3}\right)^{2 / 3}\left(e^{2}+i^{2}\right)
$$

Stability Check

System 1:

$$
\begin{gathered}
\Delta \sim 3.2 R_{H}^{\prime}, m_{*}=1.0, \\
a_{1}=1.0, m_{2}=m_{3}=0.001
\end{gathered}
$$

System 2:
$\Delta \sim 3.5 R_{H}^{\prime}, m_{*}=1.0$, $a_{1}=1.0, m_{2}=m_{3}=0.001$

Hands on Dynamics Session: Why the tame reaction?

Hands on Dynamics Session: Why the tame reaction?

Hands on Dynamics Session: Why the tame reaction?

$$
\begin{aligned}
& \frac{v_{H}}{v_{\mathrm{esc}, *}}=\left(\frac{m_{1}}{3 M_{*}}\right)^{1 / 3} / \sqrt{2} \approx 0.05 \\
& r_{\mathrm{ej}} \approx \frac{G m_{1}}{v_{\mathrm{esc}, *}^{2}}=5 \times 10^{-4} a_{1} \approx 0.007 R_{H}^{\prime}
\end{aligned}
$$

Multi-Planet Stability: >3 Close Planets

- No more "clean" analytic rules for stability:
- average instability timescale (Chambers et al 1996, fit Youdin, Kratter, \& Kenyon 2012)
$\log \left(\mathrm{t}_{\mathrm{c}} / \mathrm{P}_{1}\right)=-9.11+4.39 \Delta^{\prime} \mu^{1 / 12}-1.07 \log (\mu)$
- Above 5, number of planets makes little difference to instability timescale

- Two and three body resonances important (see e.g. Quillen 2011)

$$
\begin{gathered}
\Delta \sim 3.5 R_{H}^{\prime}, m_{*}=1.0 \\
a_{1}=1.0, m_{2}=m_{3}=m 4=0.001
\end{gathered}
$$

Resonances

- Definition: Resonances are precise numerical relationships between frequencies or periods (Murray \& Dermott 1999)
- Spin-Orbit (Earth, Moon)
- Orbit-Orbit / mean motion (Neptune-Pluto)
- Secular Resonance (e.g. Kozai)
- Resonances can stabilize orbits
- torques always return you to the resonance
- Less time averaging at higher e

Peale 1976

Figure 1 Large-eccentricity stability mechanism. Arbitrary positions of repetitive conjunctions are at points $A, B, C, D . L$ and n are angular momentum and mean motions, respectively.

Example:
Laplace Resonance

Resonance: Stable or Unstable?

- Stabilize by preventing close interactions (Neptune, Pluto)
- Destabilize due to resonance overlap: two (or more) resonances occur in the same phase space

Nesvorny' et al 2002

Multi-Planet Stability: >3 Close Planets

- Good Scaling (for equal mass, equal spacing)
- Real systems?

Multi-Planet Stability: >3 Close Planets

- Good Scaling (for equal mass, equal spacing)
- Real systems?

Lissauer et al 2011

Smith \& Lissauer 2009

More complicated: Binary Planetary Systems

Stability of Planets around Binaries: R3BP

Holman \& Wiegert 1999

- Two types of orbits
- "P Type" orbits have planet outside of stellar binary
- "S Type" orbits have planet around one star in the binary

Mudryk \& Wu 2006 show that the cause is resonance overlap

Applications of Dynamics

Q: What do we do in the absence of exquisite Kepler light curves, and great software packages?

Applications of Dynamics

Q: What do we do in the absence of exquisite Kepler light curves, and great software packages?

A: We learn a lot by modeling system dynamics alone

Example I: Masses and Formation of HR 8799

Example I: Masses and Formation of HR 8799

Example I: Masses and Formation of HR 8799

- Dynamical modeling shows that low masses and resonant high mass configurations are stable

Example I: Masses and Formation of HR 8799

Kratter, Murray-Clay, Youdin 2010

- Formation models prefer low masses or migration scenarios that don't favor resonance

Example II: The most famous circumbinary system

PLUTO NEVER SHOULD HAVE BEEN A PLANET.

Example II: The most famous circumbinary system

PLUTO NEVER SHOULD have been a planet.

Example II: The most famous circumbinary system

Example II: The most famous circumbinary system

Pluto's satellite

Pluto-Charon

Semi-major axis

$17536 \pm 4 \mathrm{~km}$ to system barycenter, 19571 ± 4 km to the center of Pluto

Eccentricity

0.0022

Orbital period
$6.3872304 \pm 0.0000011 \mathrm{~d}$
(6 d 9 h 17 m 36.7 ± 0.1 s)
Inclination
0.001°
(to Pluto's equator)
$119.591 \pm 0.014^{\circ}$
(to Pluto's orbit)
$112.783 \pm 0.014^{\circ}$
(to the ecliptic)
Mass Pluto
$(1.305 \pm 0.007) \times 10^{22} \mathrm{~kg}[4]$
Mass Charon
$(1.52 \pm 0.06) \times 10^{21} \mathrm{~kg}[2]$
(2.54×10^{-4} Earths)
(11.6\% of Pluto)

Mass Nix
$5 \times 10^{16}-2 \times 10^{18} \mathrm{~kg}[4]$
Mass Hydra
$1 \times 10^{17}-9 \times 10^{17} \mathrm{~kg}[3]$

Kepler 16b

Parameter	Value and Uncertainty
Star A	
Mass, $M_{A}\left(M_{\odot}\right)$	$0.6897{ }_{-0.0034}^{+0.0035}$
Radius, $R_{A}\left(R_{\odot}\right)$	$0.6489_{-0.0013}^{+0.0013}$
Mean Density, $\rho_{A}\left(\mathrm{~g} \mathrm{~cm}^{-3}\right)$	$3.563_{-0.016}^{+0.017}$
Surface Gravity, $\log g_{A}(\mathrm{cgs})$	$4.6527_{-0.0016}^{+0.0017}$
Effective Temperature, $T_{\text {eff }}(\mathrm{K})$	4450 ± 150
Metallicity, [m / H]	-0.3 ± 0.2
Star B	
Mass, $M_{B}\left(M_{\odot}\right)$	$0.20255_{-0.00065}^{+0.0066}$
Radius, $R_{B}\left(R_{\odot}\right)$	$0.22623_{-0.00053}^{+0.00059}$
Mean Density, $\rho_{B}\left(\mathrm{~g} \mathrm{~cm}^{-3}\right)$	$24.69_{-0.15}^{+0.13}$
Surface Gravity, $\log g_{B}(\mathrm{cgs})$	$5.0358_{-0.0017}^{+0.0014}$
Planet b	
Mass, $M_{b}\left(M_{\text {Jupiter }}\right)$	$0.333_{-0.016}^{+0.016}$
Radius, R_{b} ($R_{\text {Jupiter }}$)	$0.7538_{-0.0023}^{+0.0026}$
Mean Density, $\rho_{b}\left(\mathrm{~g} \mathrm{~cm}^{-3}\right)$	$0.964_{-0.046}^{+0.047}$
Surface Gravity, $g_{b}\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$	$14.52_{-0.69}^{+0.70}$
Binary star orbit	
Period, P_{1} (day)	$41.079220_{-0.000077}^{+0.000078}$
Semi-major axis length, a_{1} (AU)	$0.22431_{-0.00034}^{+0.00035}$
Eccentricity, e_{1}	$0.15944_{-0.00062}^{+0.0061}$
Argument of Periapse, ω_{1} (deg)	$263.464_{-0.027}^{+0.026}$
Mean Longitude, λ_{1} (deg)	$92.3520_{-0.0011}^{+0.0011}$
Inclination, i_{1} (deg)	$90.3401_{-0.0019}^{+0.0016}$
Longitude of Nodes, Ω_{1} (deg)	$\equiv 0$ (by definition)
Circumbinary planet orbit	
Period, P_{2} (day)	$228.776_{-0.037}^{+0.020}$
Semi-major axis length, a_{2} (AU)	$0.7048_{-0.0011}^{+0.0011}$
Eccentricity, e_{2}	$0.0069_{- \text {Onis }}^{+0.0010}$

Period, P_{2} (day)

Eccentricity, e_{2}

Decomposing the Pluto and Charon System

- Understanding stability in a multi-planet, binary system not possible through any 3 body arguments
- Stable as test particles about a binary
- Any two satellites are stable about P-C barycenter
- Three satellites about P-C barycenter are stable for some masses
- Full System (numerically)

0
-

p4

Nix

Decomposing the Pluto and Charon System

- Understanding stability in a multi-planet, binary system not possible through any 3 body arguments
- Stable as test particles about a binary
- Three satell/es aboft P-C arycenter are stable for some masses

Decomposing the Pluto and Charon System

- Understanding stability in a multi-planet, binary system not possible through any 3 body arguments
- Stable as test particles about a binary
- Any two satellites are stable about P-C barycenter

Decomposing the Pluto and Charon System

- Understanding stability in a multi-planet, binary system not possible through any 3 body arguments
- Stable as test particles about a binary
- Any two satellites are stable about P-C barycenter
- Three satellites about P-C barycenter are stable for some masses

p4
Hydra

Decomposing the Pluto and Charon System

- Understanding stability in a multi-planet, binary system not possible through any 3 body arguments
- Stable as test particles about a binary
- Any two satellites are stable about P-C barycenter
- Three satellites about P-C barycenter are stable for some masses
- Full System (numerically)

Decomposing the Pluto and Charon System

- Understanding stability in a multi-planet, binary system not possible through any 3 body arguments
- Stable as test particles about a binary
- Any two satellites are stable about P-C barycenter
- Three satellites about P-C barycenter are stable for some masses
- Full System (numerically)

p4
p5
Pluto

Nix

Decomposing the Pluto and Charon System

- Understanding stability in a multi-planet, binary system not possible through any 3 body arguments
- Stable as test particles about a binary
- Any two satellites are stable about P-C barycenter
- Three satellites about P-C barycenter are stable for some masses
- Full System (numerically)

Circumbinary Multi-planet stability

- Locations fixed by

 observations, so vary masses of Nix \& Hydra- populate with potential orbits of new satellite (test particle) and run for 1 billion Pluto-Charon orbits
- Examine lifetime as a function of semi-major axis and eccentricity

Youdin, Kratter, \& Kenyon, 2012

Most Circular Orbit: Beware non-Keplerian orbits

- Orbits about binary are significantly non-Keplerian (Lee \& Peale 2006)
- To get "circular" orbits, cannot simply set e=0
- Are cold orbits more stable?

Youdin, Kratter, \& Kenyon, 2012

Dynamics tell us that Nix \& Hydra are bright

"Keplerian"

Nix and Hydra Albedo

$$
\begin{aligned}
\mu_{\mathrm{Nix}} & \approx 6.4 \times 10^{-7} \rho_{1} A^{-3 / 2} \\
\mu_{\mathrm{Hyd}} & \approx 1.1 \times 10^{-6} \rho_{1} A^{-3 / 2} \\
\mu_{\mathrm{P} 4} & \approx 2.0 \times 10^{-8} \rho_{1} A^{-3 / 2}
\end{aligned}
$$

"Circular"

Resonance destabilization

- 5:1 appears to be unstable for a range of parameters
- Eccentricity of Pluto-Charon is a relatively weak effect

Credit: Alex Parker

Resonance destabilization

- 5:1 appears to be unstable for a range of parameters
- Eccentricity of Pluto-Charon is a relatively weak effect

Credit: Alex Parker

Circumbinary vs Single multi-planet stability

- Evidence for the role of resonances in controlling long term stability for Kepler 16 multi analog

Smith \& Lissauer 2009, Kratter, Shannon, \& Youdin in prep

Part III: When Stars Die

Giant planets around solar-type stars

Earth-mass planets around a neutron star

A. Wolszczan

Dynamics of Stellar Death

Veras et al 2011

- Slow adiabatic mass loss conserves eccentricity, but semimajor axis grows
- Change relative spacings in multiplanet systems
- Non-constant mass loss can excite eccentricity and lead to planetary loss
- Engulfment

Extreme Example: Mass loss in binary planetary systems

- Differential mass loss causes the planet to expand much more than the binary

companion

Extreme Example: Mass loss in binary planetary systems

- Differential mass loss causes the planet to expand much more than the binary

companion

Extreme Example: Mass loss in binary planetary systems

- Differential mass loss causes the planet to expand much more than the binary companion

Kratter \& Perets, 2012

Extreme Example: Mass loss in binary planetary systems

- Differential mass loss causes the planet to expan more than the binar companion

Kratter \& Perets, 2012

© K. Kratter 2011

In the rotating reference frame...(CR3BP)

Capture Mechanism

- Zero velocity curves show the bounds of an object's orbit for fixed Jacobi constant

Kratter \& Perets 2012

- Mass loss opens and closes the bottleneck (at L1) through which destabilized planets travel
- Long term (>100Myr) stability not guaranteed

Heppenheimer \& Porco 1977 Vieira Neto et al 2006

Conclusions

1) Provide an overview of role of dynamics in formation and evolution of the systems you will observe

- Dynamics controls the birth, evolution, and death of planetary systems

2) Provide basic tools to help analyze and validate new systems

- Kepler light curves are fantastic. Dynamical modeling makes it even more powerful
- Light Curves + Dynamics sheds light on physics, formation, and fate
- Simple estimate can help (in)validate detections

2) Keep theory in mind in choosing project and writing papers

[^0]: $$
 \sigma_{\mathrm{rel}}>v_{H}
 $$

 "Dispersion-Dominated"
 (2 body problem)

