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Goals

1) Provide an overview of role of dynamics in formation and 
evolution of the systems you will observe

2) Provide basic tools to help analyze and validate new 
systems

3) Keep theory in mind in choosing project and writing 
papers*

*speaker may be biased...
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Outline

• Quantifying the dynamical influence of 
a planet

• How dynamics shape planetary growth

• Stability of multi-planet systems (2, >3)

• Stability of binary (multi) planetary 
systems

• The dynamical fate of planets after 
stellar evolution

Overviews and primary 
references:
Peale 1976

Gladman 1993
Chambers, Wetherill, & Boss 1996

Holman & Wiegert 1999
Goldreich, Lithwick & Sari 2004

Smith & Lissauer 2009
Armitage 2010

Fabrycky et al 2011
Youdin & Kenyon 2012
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Who’s in Charge: The Hill Radius

• Def: Where the Planet’s Gravity Dominates over Tidal gravity due to the star
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a

GMp

∆R2
≈ GM∗

a3
∆R

∆R→ RH ≈
�

Mp

M∗

�1/3

a

Roche Radius/Limit: size of a body that will be tidally 
disrupted

Roche Lobe: defined by equipotential surfaces, more 
appropriate for   µ ∼ 1
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Hill Radius Dimensionless planet(esimal) size
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Part I: Birth 

Proplyd (credit: Hubble) Solar System (e.g. Nice 
Model)
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Core Accretion Theory of Planet Formation

•Step 1: Planetesimal formation via 
coagulation, collisions, gravitational 
instability of solids: from μm - km (100 
km?)

•Step 2: Terrestrial planet growth via 
gravity assisted collisional accretion: 
from ~km to Earth mass cores

•Step 3: Core Accretion: Solid cores 
gather gas until disk disappears

•Step 4: Migration and Scattering (in/out) 
to new location within stellar system
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Dynamics-Driven

Friday, July 27, 2012



Dynamics in Planetesimal Growth

• Growth rates depend on the 
relative velocities within the 
disk:

• heating: scattering, 
collisions, fragmentation

• cooling: dynamical 
friction, collisions, gas 
effects

32

or via gas photoevaporation (Throop & Bally, 2005) –
may be needed prior to the onset of streaming instabil-
ities, and how easy it is for collisional evolution to form
the relatively large particles needed to trigger the insta-
bility. Coagulation calculations by Zsom et al. (2010),
for example, have identified a “bouncing barrier” that
makes growth past mm-scales – which are rather small
compared to what is needed for streaming instabilities –
problematic. Empirically, it is worth bearing in mind,
first, that in the Solar System planetesimals managed
to form across a wide range of orbital radii, and that,
second, subtle evidence of the formation channel may
yet be preserved in the size distribution of asteroids and
other minor bodies in the Solar System. Morbidelli et al.
(2009), for example, has argued that the size distribu-
tion of asteroids favors models in which the initial gener-
ation of planetesimals were born very large (say 100 km).
Large planetesimals are the prediction of current models
based upon the streaming instability, though it is proba-
bly too early to be entirely confident that this prediction
is robust.

B. Growth beyond planetesimals

Once planetesimals have formed, further interaction
between the solid and gaseous components of the disk is
limited until bodies with sizes > 103 km form that are
large enough to have a gravitational coupling to the gas15.
We will discuss the impact of gravitational coupling (“mi-
gration”) later in the context of the early evolution of
planetary systems. If coupling with the gas disk can be
neglected, further growth to form protoplanets or plan-
etary embryos is a well-posed N-body problem in which
gravity provides the dominant physics.

Being well-posed is not the same as easy – if the Earth
formed from 5 km radius planetesimals then N ∼ 109.
Although N-body simulations with this many particles
are certainly feasible (Springel et al., 2005), it is not pos-
sible to simulate such large particle numbers for the∼ 108

orbits required for an ab initio calculation of terrestrial
planet formation (making matters more difficult, for long
duration integrations special numerical techniques are
needed to keep integration errors under control). The
usual approach is therefore a combination of statistical
and N-body methods.

15 Strictly, all that is known for sure is that aerodynamic effects
are negligible for planetesimals. The gas disk might still couple to
planetesimals gravitationally, if turbulence produces surface den-
sity fluctuations that can gravitationally scatter planetesimals.
There have been a number of recent studies of this process (John-
son, Goodman & Menou, 2006; Laughlin, Steinacker & Adams,
2004; Nelson, 2005; Nelson & Papaloizou, 2004; Yang, Mac Low
& Menou, 2009).
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FIG. 23 Setup for calculation of gravitational focusing. Two
bodies of mass m, moving on a trajectory with impact pa-
rameter b, have a velocity at infinity of σ/2.

1. Gravitational focusing

For sufficiently small bodies, the effects of gravity can
be ignored for the purposes of determining whether they
will physically collide. A massive planet, on the other
hand, can gravitationally focus other bodies toward it,
and as a result has a collision cross section that is much
larger than its physical cross section.
To evaluate the magnitude of this gravitational focus-

ing, consider two bodies of mass m, moving on a trajec-
tory with impact parameter b, as shown in Figure 23. The
relative velocity at infinity is σ. At closest approach, the
bodies have separation Rc and velocity Vmax. Equating
energy in the initial (widely separated) and final (closest
approach) states we have,

1

4
mσ2 = mV 2

max −
Gm2

Rc
. (163)

Noting that there is no radial component to the veloc-
ity at the point of closest approach, angular momentum
conservation gives,

Vmax =
1

2

b

Rc
σ. (164)

If the sum of the physical radii of the bodies is Rs, then
for Rc < Rs there will be a physical collision, while larger
Rc will result in a harmless flyby16. The largest value of
the impact parameter that will lead to a physical collision
is thus,

b2 = R2
s +

4GmRs

σ2
, (165)

which can be expressed in terms of the escape velocity
from the point of contact, v2esc = 4Gm/Rs as,

b2 = R2
s

(

1 +
v2esc
σ2

)

. (166)

16 This is true for solid bodies – for giant planets or stars tidal
effects can lead to significant dissipation of energy even when
Rc > Rs (Fabian, Pringle & Rees, 1975).

Armitage 2010
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The cross section for collisions is then,

Γ = πR2
s

(

1 +
v2esc
σ2

)

, (167)

where the term in brackets represents the enhancement to
the physical cross section due to gravitational focusing.
Clearly a planet growing in a “cold” planetesimal disk
for which σ ! vesc will grow much more rapidly as a
consequence of gravitational focusing. As a consequence,
determining the velocity dispersion of bodies of different
masses during the planet formation process is extremely
important.

2. Growth versus fragmentation

When two initially solid bodies physically collide the
outcome can be divided broadly into three categories:

• Accretion. All or most of the mass of the impactor
becomes part of the mass of the final body, which
remains solid. Small fragments may be ejected, but
overall there is net growth.

• Shattering. The impact breaks up the target
body into a number of pieces, but these pieces re-
main part of a single body (perhaps after reaccumu-
lating gravitationally). The structure of the shat-
tered object resembles that of a rubble pile.

• Dispersal. The impact fragments the target into
two or more pieces that do not remain bound.

To delineate the boundaries between these regimes quan-
titatively, we consider an impactor of mass m colliding
with a larger body of mass M at velocity v. We define
the specific energy Q of the impact via,

Q ≡
mv2

2M
, (168)

and postulate, plausibly, that this parameter largely con-
trols the result. The thresholds for the various collision
outcomes can then be expressed in terms of Q. Conven-
tionally, we define the threshold for catastrophic disrup-
tion Q∗

D as the minimum specific energy needed to dis-
perse the target in two or more pieces, with the largest
one having a mass M/2. Similarly Q∗

S is the threshold
for shattering the body. More work is required to dis-
perse a body than to shatter it, so evidently Q∗

D > Q∗
S.

It is worth keeping in mind that in detail the outcome
of a particular collision will depend upon many factors,
including the mass ratio between the target and the im-
pactor, the angle of impact, and the shape and rotation
rate of the bodies involved. Quoted values of Q∗

D are of-
ten averaged over impact angles, but even when this is
done the parameterization of collision outcomes in terms
of Q is only an approximation.
The estimated values of Q∗

D for a target of a particular
size vary by more than an order of magnitude depending

upon the composition of the body, which can broadly
be categorized into solid or shattered rock, and solid or
porous ice. For any particular type of body, however, two
distinct regimes can be identified:

• Strength dominated regime. The ability of
small bodies to withstand impact without being
disrupted depends upon the material strength of
the object. In general, the material strength of
bodies declines with increasing size, owing to the
greater prevalence of defects that lead to cracks. In
the strength dominated regime Q∗

D decreases with
increasing size.

• Gravity dominated regime. Large bodies are
held together primarily by gravitational forces. In
this regime Q∗

D must at the very least exceed the
specific binding energy of the target, which scales
with mass M and radius a as QB ∝ GM/a ∝ ρda2.
In practice it requires a great deal more than this
minimum amount of energy to disrupt the target –
so QB is not a good estimate of Q∗

D – but nonethe-
less Q∗

D does increase with increasing size.

Although the transition between these regimes is reason-
ably sharp there is some influence of the material proper-
ties (in particular the shear strength) on the catastrophic
disruption threshold for smaller bodies within the gravity
dominated regime.
Values of Q∗

S and Q∗
D can be determined experimen-

tally for small targets (Arakawa, Leliwa-Kopystynski &
Maeno, 2002). Experiments are not possible in the grav-
ity dominated regime, but Q∗

D can be estimated theo-
retically using numerical hydrodynamics (Benz & As-
phaug, 1999; Leinhardt & Stewart, 2009) or (for rub-
ble piles) rigid body dynamics simulations (Korycansky
& Asphaug, 2006; Leinhardt & Richardson, 2002). The
simplest parameterization of the numerical results is as
a broken power law that includes terms representing the
strength and gravity regimes,

Q∗
D = qs

( a

1 cm

)c
+ qgρd

( a

1 cm

)d
. (169)

Often (but not always) Q∗
D is averaged over impact ge-

ometry, and qs, qg, c and d are all constants whose values
are derived by fitting to the results of numerical simula-
tions.
Benz & Asphaug (1999) and Leinhardt & Stewart

(2009) determined the values of the fitting parameters in
equation (169) from the results of an ensemble of simu-
lations of impacts into icy or rocky targets. Their results
are given in Table III and plotted as a function of target
size in Figure 24. One observes immediately that the re-
sults for a particular target material vary with the impact
velocity, and hence that Q∗

D is not the sole determinant
of the outcome of collisions. There is, however, a clear
transition between the strength and gravity dominated
regimes, with the weakest bodies being those whose size
is comparable to the cross-over point. The most vulner-
able bodies are generally those with radii in the 100 m to

• Compare to Hill  velocity:

vH = ΩRH =
�

mp

3M∗

�1/3

vK

“Shear-Dominated”
(3-body problem)

“Dispersion-Dominated”
(2 body problem)

σrel < vH
σrel > vH

consider finding better 
diagram

direct collision cross section 
lower than gravitational
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From Planetesimals to Protoplanets

• Growth depends on location, velocity dispersion, mass, 
surface density

• Larger planetesimals grow fast due to gravitational 
focusing / dynamical friction

• Large bodies stir small ones

• Large bodies compete with each other repel to 
separations of ~5 RH

• Eventually leads to well-known Oligarchic Growth where 
smaller proto-planets grow faster 

• (Kokuba & Ida, 2000)

OLIGARCHIC GROWTH OF PROTOPLANETS 177

runaway stage, while most planetesimals remain small. The
typical orbital separation of protoplanets kept while grow-
ing is about 10rH. This value depends only weakly on the
mass of protoplanets, the surface density of the solid mate-
rial, and the semimajor axis. This self-organized structure
is a general property of self-gravitating accreting bodies
in a disk when gravitational focusing and dynamical friction
are effective.

If we assume that the oligarchic growth continues till
the final stage of planetary accretion, the mass of proto-
planets is estimated by M � 2�ab�. In the solar nebula
model that is 50% more massive than the minimum mass
model, the surface mass density of the solar nebula is
given by

� � �10 � a
1 AU��3/2

[g cm�2] a � 2.7 AU

4 � a
5 AU��3/2

[g cm�2] a � 2.7 AU.

(12)

Adopting this � and b � 10rH, we have M � 0.2M� and
b � 0.07 AU at 1 AU (� � 10 g cm�2), M � 7M� and
b � 2 AU at 7 AU (� � 2.4 g cm�2), and M � 17M� and
b � 8 AU at 25 AU (� � 0.36 g cm�2), where M� is the
Earth mass. In the terrestrial planet region, the estimated
mass and the orbital separation of protoplanets are still
smaller than the present planets. This may suggest that
oligarchic growth does not continue till the final stage of
planetary accretion in the terrestrial planet region. TheFIG. 4. The same as Fig. 1 but for the system initially consists of

4000 equal-mass planetesimals (m � 3 � 1023 g). The radius increase orbital separation may get larger in the terrestrial planet
factor is 6. In the final frame, the filled circles represent protoplanets region, if the radial excursion of planetesimals ea that is
and lines from the center of the protoplanets to both sides have the proportional to the random velocity gets larger than 10rHlength of 5rH. The protoplanets are selected if their masses are larger than

due to, for example, the clearance of solar nebula gas in1/5 of the maximum mass of the system. The numbers of planetesimals are
the late stage of planetary accretion. The absence of gas1977 (t � 5000 years), 1514 (t � 10,000 years), and 1116

(t � 20,000 years). drag leads to the higher velocity dispersion and thus wider
radial excursion.

In the jovian planet region, however, the oligarchic
growth may be consistent with the formation of the presentare formed, while most planetesimals remain small. The
planets. As for Jupiter and Saturn, which have massive gasfive protoplanets have the 34% of the total mass of the
envelopes, the estimated mass of protoplanets is as largesystem. The lines with the length of 5rH are drawn from
as the critical mass to onset the gas accretion onto thethe center of the protoplanets to both sides in the final
protoplanets. As for Uranus and Neptune, which consistframe. This Hill radius is slightly modified to include only
mainly of solid material, the estimated mass of proto-the mass of a protoplanet. The separations are roughly
planets and the orbital separation are consistent with theirconstant with the typical value of 5–10rH, which agrees
present values. These results suggest that jovian planetswell with the result of the two-protoplanet system and the
may have been formed along the line of oligarchic growth.analytical estimation.
However, we should be careful when we apply oligarchic
growth to the jovian planet region. Oligarchic growth is4. CONCLUSION AND DISCUSSION

obtained from the local area simulation where the semima-
jor axis is much larger than the width of the simulationWe have shown the oligarchic growth of protoplanets in

the post-runaway stage. Protoplanets with the same order region. It is uncertain that oligarchic growth takes place
in the wide jovian planet region in the same way as the localmasses with the orbital separation larger than about 5rH

is the inevitable outcome of planetary accretion in the post- area simulation. Further work on this issue is required.

Friday, July 27, 2012



The end of growth: Isolation Mass

• Protoplanet can only feed 
from a limited zone 
comparable to Hill radius

• Not a runaway process 
because feeding zone 
increases more slowly 
than mass

• Simulations show C ~ 3.5

36

To estimate the isolation mass, we note that a planet
grows by accreting planetesimals within a ‘feeding zone’.
The size of the feeding zone∆amax is set by the maximum
distance over which the planet’s gravity is able to perturb
planetesimal orbits sufficiently to allow collisions, so it
will scale with the Hill radius. Writing

∆amax = CrH (182)

with C a constant of order unity, we have that the mass
of planetesimals within the feeding zone is,

2πa · 2∆amax · Σp ∝ M1/3. (183)

Note the 1/3 power of the planet mass, which arises
from the mass dependence of the Hill radius. As a
planet grows, its feeding zone expands, but the mass of
new planetesimals within the expanded feeding zone rises
more slowly than linearly. We thus obtain the isolation
mass by setting the planet mass equal to the mass of the
planetesimals in the feeding zone of the original disk,

Miso = 4πa · C
(

Miso

3M∗

)1/3

a · Σp (184)

which gives,

Miso =
8√
3
π3/2C3/2M−1/2

∗ Σ3/2
p a3. (185)

Evaluating this expression in the terrestrial planet region,
taking a = 1 AU, Σp = 10 gcm−2, M∗ = M# and C =
2
√
3 (Lissauer, 1993), we obtain,

Miso # 0.07 M⊕. (186)

Isolation is therefore likely to occur late in the forma-
tion of the terrestrial planets. Repeating the estimate for
the conditions appropriate to the formation of Jupiter’s
core, using Σp = 10 gcm−2 as adopted by Pollack et al.
(1996)17, gives,

Miso # 9 M⊕. (187)

This estimate is comparable to, or larger than, the cur-
rent best determinations for the mass of the Jovian core
(Guillot, 2005). Full isolation may or may not be relevant
to the formation of Jupiter, depending upon the adopted
disk model.

6. Coagulation equation

One might legitimately question whether the assump-
tion that the mass distribution of growing bodies can

17 Note that this is a factor of several enhanced above the minimum
mass Solar Nebula value.

be neatly divided into two groups — planetesimals and
growing planetary embryos — is any good. The quan-
titative approach to describing the evolution of a arbi-
trary size distribution is based on the coagulation equa-
tion (Smoluchowski, 1916). This allows us to drop the
two groups approximation though at the expense of an
enormous increase in complexity.
To write the coagulation equation in its simplest

form18, assume that the masses of bodies are integral
multiples of some small mass m1. At time t there are nk

bodies of mass mk = km1. The coagulation equation in
discrete form is,

dnk

dt
=

1

2

∑

i+j=k

Aijninj − nk

∞
∑

i=1

Akini (188)

where Aij is the rate of mergers between bodies of mass
mi and mj. The first term on the right-hand side of the
equation describes the increase in the number of bodies
of mass mk due to collisions of all possible pairs of bodies
whose masses mi and mj sum to mk. The second term
describes the decrease due to bodies of mass mk being
incorporated into even larger bodies. The possibility of
fragmentation is here neglected. In this formulation of
the problem of planetary growth, all of the physics —
such as gravitational focusing — enters via the rate co-
efficients Aij .
Equation (188), or variants of it, has been used ex-

tensively to study planet formation (Inaba et al., 2001;
Kenyon & Luu, 1998; Safronov, 1969; Wetherill & Stew-
art, 1993), either on its own or in combination with direct
N-body simulations (Bromley & Kenyon, 2006). Gener-
ally the coagulation equation needs to be supplemented
with additional equations that describe the evolution of
the velocity dispersion as a function of mass, as described
for example in Kenyon & Luu (1998). Because of the fact
that all i, j such that mi + mj = mk contribute to the
evolution of nk, even the coagulation equation on its own
is not a simple equation to deal with, and few analytic
solutions are known. One (over)-simple case for which
an analytic solution exists is for the case when,

Aij = α (189)

with α a constant. Then, if the initial state of the sys-
tem comprises n1 bodies all of mass m1, the solution to
equation (188) is,

nk = n1f
2(1− f)k−1

f ≡
1

1 + 1
2αn1t

. (190)

18 It is also possible to write the coagulation equation as an integro-
differential equation for a continuous mass function n(m, t)
(Safronov, 1969), or as a discrete equation where bodies are
binned into arbitrary mass intervals (typically logarithmic).
Kenyon & Luu (1998) provide a clear description of how the
coagulation equation may be formulated and solved in the more
general case.

19
90
AJ
..
..
10
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16
80
G

Gladman & 
Duncan 1990
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fragmentation is here neglected. In this formulation of
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Part II: Planetary System Architecture 
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Multi-Planet Stability: Restricted 3 body problem

• Two massive bodies in orbit 
generate a potential in which test 
particles move

• Equation of motion are simple in 
dimensionless coordinates, in the 
rotating frame

• There is one integral of motion, 
known as the Jacobi constant

• Explore orbital behavior using zero 
velocity curves, and Poincare 
surface of section

• Planetary limit, curves at L1 open 
when:

1rad/tu = ω =

�
G(m1 + m2)

r3
12

=

�
G(1mu)
(1du)3

From here it is clear that the numerical value of G is one in these units.
Finally, note that since, by definition µ = m2

m1+m2
and in these units m1 +

m2 = 1 we have that m2 = µ.
Using the same relation, solve instead for m1;

µ =
m2

m1 + m2

µ(m1 + m2) = m2

m1 =
m2

µ
−m2

= m2(
1
µ
− 1)

= m2
1− µ

µ

= µ
1− µ

µ
= 1− µ

Then in these special units both the locations, and masses of the primaries are
expressed in terms of the parameter µ. To recapitulate, the primary body has
mass m1 = 1 − µ and is located at −x1 = −µ in the rotating frame, while the
secondary body has mass m2 = µ and is located at x2 = 1 − µ in the rotating
frame. Furthermore G = ω = 1.

Then is these “dimensional” units, the equations of motion are




ẍ
ÿ
z̈



 =




x + 2ẏ − 1−µ

r3
1

[x + µ]− µ
r3
2
[x− (1− µ)]

y − 2ẋ− 1−µ
r3
1

y − µ
r3
2
y

− 1−µ
r3
1

z − µ
r3
2
z





with

r1 =
�

(x + µ)2 + y2 + z2

and

r2 =
�

(x− (1− µ))2 + y2 + z2

The dynamical system defined by these equations is the dimensionless cir-
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ẍ
ÿ
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Multi-Planet Stability: Restricted 3 body problem

• Two massive bodies in orbit 
generate a potential in which test 
particles move

• Equation of motion are simple in 
dimensionless coordinates, in the 
rotating frame

• There is one integral of motion, 
known as the Jacobi constant

• Explore orbital behavior using zero 
velocity curves, and Poincare 
surface of section

• Planetary limit, curves at L1 open 
when:
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Stability of Two Planet Systems (3 body problem)

• Lagrange Stable: Semi-major axes are bounded

• Hill Stable: No close interactions allowed

Topological Stability in the (general) three body problem:

• initial conditions dictate stability for all time

• equivalent of zero-velocity curves in restricted three-body problem (not as easily 
visualized)

• useful to define mutual Hill Radius:

L2E > (L2E)crit

Marchal and Bozis 1982 Gladman 1993

R�
H

=
�

µ1 + µ2

3

�1/3 (a1 + a2)
2
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Stability of Multi Planet Systems: Two Close Planets

• Compute the critical value in terms of                   for  circular two planets:

• Non-circular orbits:

L2E

∆ ≈ 2.4(µ1 + µ2)1/3

µ1 = µ2 → ∆ ≈ 3µ1/3

∆2 > 12 + 4/3
�

µ1 + µ2

3

�2/3

(e2 + i2)

G = 1, µ = mp/m∗, a1 = 1, e = 0, i = 0

Gladman 1993, Hasegawa & Nakazawa 1990)
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Stability Check

System 1: System 2:
∆ ∼ 3.2R�

H
, m∗ = 1.0,

a1 = 1.0,m2 = m3 = 0.001
∆ ∼ 3.5R�

H
, m∗ = 1.0,

a1 = 1.0,m2 = m3 = 0.001
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vH

vesc,∗
=

�
m1

3M∗

�1/3

/
√

2 ≈ 0.05O.O.M!

Hands on Dynamics Session: Why the tame 
reaction?
∆

a/
(µ

1
+

µ
2
)1

/
3

∆
a/

(µ
1

+
µ

2
)1

/
3

rej ≈
Gm1

v2
esc,∗

= 5× 10−4a1 ≈ 0.007R�
HO.O.M!!
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Multi-Planet Stability: >3 Close Planets

• No more “clean” analytic rules 
for stability:

• average instability timescale 
(Chambers et al 1996, fit 
Youdin, Kratter, & Kenyon 2012)

• Above 5, number of planets 
makes little difference to 
instability timescale

• Two and three body 
resonances important (see e.g. 
Quillen 2011)

log(tc/P1) = −9.11 + 4.39∆�µ1/12 − 1.07log(µ)

∆ ∼ 3.5R�
H

, m∗ = 1.0,

a1 = 1.0, m2 = m3 = m4 = 0.001
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Resonances

• Definition: Resonances are precise 
numerical relationships between 
frequencies or periods (Murray & Dermott 
1999)

• Spin-Orbit (Earth, Moon)

• Orbit-Orbit / mean motion 
(Neptune-Pluto)

• Secular Resonance (e.g. Kozai) 

• Resonances can stabilize orbits

• torques always return you to the 
resonance

• Less time averaging at higher e Example:
Laplace Resonance

19
76
AR
A&
A.
.1
4.
.2
15
P

Peale 1976
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Resonance: Stable or Unstable?

• Stabilize by preventing 
close interactions 
(Neptune, Pluto)

• Destabilize due to 
resonance overlap: two (or 
more) resonances occur in 
the same phase space

384 Asteroids III

stand the dynamics of real bodies. The three-body reso-
nances are usually as narrow as two-body resonances with
Mars (<10–2 AU), but generally being of a low order, they
have nonnegligible sizes down to small eccentricities. More-
over, the three-body MMRs are numerous.

4. CHAOTIC SECULAR DYNAMICS IN THE
MEAN-MOTION RESONANCES WITH

JUPITER: THE KIRKWOOD GAPS

The bodies inside the wide MMRs with Jupiter undergo
important secular dynamics, in particular for what concerns
the evolution of e (Wisdom, 1982; Yoshikawa, 1990, 1991;

Ferraz-Mello and Klafke, 1991; Morbidelli and Moons,
1995; Gladman et al., 1997). We briefly review how this
can be theoretically justified, restricting for simplicity to the
case where the asteroid and planets have coplanar orbits,
although elliptic and precessing [see Morbidelli and Moons
(1993) for a discussion of the inclined case]. We start from
the resonant Hamiltonian equation (8), that we rewrite as

2BR = PC +  where PC is given in equation (12), and
 = 2BR – PC. The function  can be considered as a

perturbation of PC, because (for D’Alembert rules) the
former is proportional to the planetary eccentricities.

Because PC is integrable, we introduce the Arnold ac-
tion-angle variables in the MMR region where σ librates.
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Fig. 2. Global structure of the MMRs in the asteroid belt. There are four different gray shades denoting the regions of resonant mo-
tion with planets: light gray for Jupiter MMRs, intermediate for Saturn MMRs, and dark gray for Mars MMRs. Each resonance cor-
responds to one V-shaped region except the large first-order MMRs with Jupiter, which have particular shapes. Some of the resonances
are labeled. For some Jupiter MMRs the projection of separatrixes on the a, e plane is shown by black lines; for 2J:1, 3J:2, and 4J:3,
these lines are bold. We also show the proper (dots; Milani and Knezevic, 1994) or orbital elements (crosses; Bowell et al., 1994) of
asteroids with magnitudes up to the completeness level. In case of the group of small asteroids in the 2J:1 MMR (arrow indicates
3789 Zhongguo), the resonant elements are plotted (asterisks; Roig et al., 2002). Other resonant asteroids are the Hilda group in the
3J:2 MMR and 279 Thule in the 4J:3 MMR. The orbits above the dashed lines are planet-crossing.

Nesvorny´ et al 2002 see e.g. Wisdom 1980
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Multi-Planet Stability: >3 Close Planets

• Good Scaling (for equal 
mass, equal spacing)

• Real systems?Orbital stability of systems of closely-spaced planets 383

Fig. 1. log tc versus β for five 3.0035 × 10−6 M# (1 M⊕) planets on initially circular, coplanar orbits. The line is a least-squares fit to the data with 3.4 ! β ! 8.4. To obtain
this fit, the additional points for 6.4 < β < 6.8 were not included to avoid biasing the results. The boxed region is expanded in Fig. 12a.

low-β regime results from the planets being scattered during their
first close approach, and this occurs later for more closely spaced
planets as they have a longer synodic period. The lack of variability
in the results in this portion of the curve is a consequence of our
prescription of the initial particle longitudes. The second regime in
Fig. 1 is the portion of the data set falling within 3.4 ! β ! 8.4,
which is well modeled by an equation of the form

log
[
tc
to

]
= bβ + c, (6)

where b and c are constants, and to is the initial orbital period of
the innermost planet orbiting at 1 AU (i.e. to = 1 yr). The least-
squares fit to our data gives b = 1.012 and c = −1.686 with the
goodness of fit parameter ζ 2 = 0.0137.1 To obtain this fit, we used
only the dt = 0.005 years data point at a given β if multiple re-
sults were present at a single β . The form of Eq. (6) is consistent
with the results of Chambers et al. (1996), who studied systems
of 10−5 M# , 10−7 M# and 10−9 M# planets for times up to
107 years. One extension that our research makes to such exist-
ing studies is to increase the maximum virtual time investigated
by three orders of magnitude to 1010 years. This allows us to ob-
serve the third stability regime in Fig. 1, which occurs for β > 8.4.
In this regime, the stability time increases more sharply with in-
creases in β , quickly reaching 7× 109 and 9× 108 years at β = 8.7
and 8.8, respectively. Such an upturn in the stability time has been
seen by Duncan and Lissauer (1997, 1998) in studies of the inner
uranian satellites and giant planets around a reduced-mass Sun,
respectively.

1 Here, we define ζ 2 ≡ 1
N

∑
N [(O − E)/E]2 where O is the logarithm of the ob-

served crossing time, E is the logarithm of the expected crossing time based on the
least-squares fit to the data, and N is the number of data points included in the fit.
ζ 2 is dimensionless and provides a measure of the scatter of the data, with ζ 2 = 0
being a perfect fit to the data with no scatter, and ζ 2 > 0 indicating progressively
more scatter in the data.

3.1. Influence of planet number

In their study of the stability of multi-planet systems, Chambers
et al. (1996) investigated systems of 3, 5, 10, and 20 planets. They
found that increasing the number of planets beyond five had lit-
tle effect on the resulting stability time of the systems; however,
systems of three planets were considerably more stable than the
more populous systems. We chose to extend this investigation of
systems of three planets to longer integration times. We kept the
masses of the planets the same as for the results shown in Fig. 1,
3.0035×10−6 M# . Fig. 2 shows the logarithm of the crossing time,
tc , at which the first pair of orbits crossed with respect to the
initial orbital spacing parameter, β , for this system of three Earth-
mass planets alongside the previous results for the five-planet
system. For clarity, the additional points at 6.4 < β < 6.8 in the
five-planet system are not shown. A symplectic integrator with a
timestep of 0.005 years was used for the calculations. The points
shown with an upward-pointing arrow indicate lower limits for
which no orbit crossing has been detected. The point at β = 7.5
was stopped at 1010 years, but no orbit crossing had yet occurred.

The least-squares fit to the three-planet data gives b = 1.496
and c = −3.142 with ζ 2 = 0.0261. The three-planet system is more
stable than the five-planet system for every value of β tested.
The three-planet case shows considerably more dispersion than the
five-planet case, particularly at larger β . In addition, the transition
from a flat to linear relationship between the stability time (log tc)
and initial orbital spacing occurs at smaller β (near β = 3.0) than
in the five-planet case.

3.2. Influence of planet mass

Chambers et al. (1996) found that, for a system of three plan-
ets, decreasing the mass from 10−5 M# to 10−9 M# significantly
reduced the stability time of the system for comparable values of
β (albeit not by as much as it increased stability times for sepa-
rations measured in unscaled distance). We chose to use the five-
planet system as our primary comparison, so we investigated the
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Fig. 1. log tc versus β for five 3.0035 × 10−6 M# (1 M⊕) planets on initially circular, coplanar orbits. The line is a least-squares fit to the data with 3.4 ! β ! 8.4. To obtain
this fit, the additional points for 6.4 < β < 6.8 were not included to avoid biasing the results. The boxed region is expanded in Fig. 12a.

low-β regime results from the planets being scattered during their
first close approach, and this occurs later for more closely spaced
planets as they have a longer synodic period. The lack of variability
in the results in this portion of the curve is a consequence of our
prescription of the initial particle longitudes. The second regime in
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log
[
tc
to

]
= bβ + c, (6)

where b and c are constants, and to is the initial orbital period of
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N

∑
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five-planet system are not shown. A symplectic integrator with a
timestep of 0.005 years was used for the calculations. The points
shown with an upward-pointing arrow indicate lower limits for
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Stability of Planets around Binaries: R3BP

• Two types of orbits

• “P Type” orbits have planet outside of stellar 
binary

• “S Type” orbits have planet around one star 
in the binary 

• Mudryk & Wu 2006 show that the cause is 
resonance overlap
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FIG. 1.ÈCritical semimajor axis as a function of 1 [ u for the binarya
ceccentricity e \ 0. The heavy line indicates the (1 [ k)1@3 dependence of the

HillÏs sphere. The error bars used in this and the following Ðgures indicate
the full separation between simulated particles, i.e., if the particle separa-
tion is the error bars span0.01a

b
, ^0.01a

b
.

marginal case of k \ 0.5. The solid line is our least-squares
Ðt ; the dashed line is that of Rabl & Dvorak (1988). They
only explored up to e \ 0.6 ; their line deviates most from
ours when it is extrapolated beyond e \ 0.6. As longer inte-
grations might tend to bring the entire curve down, it is

FIG. 2.ÈCritical semimajor axis as a function of the binary eccentricity
for k \ 0.5 (equal masses). The solid line is the least-squares Ðt to results in
this paper plotted for the range of eccentricity studied. The dashed line is
the empirical Ðt reported by Rabl & Dvorak (1988). It is clear that the two
are consistent.

clear that this is not an important di†erence between the
investigations. The Ðts are more strongly a†ected by the end
points than by the integration length. Figure 3 shows the
data and empirical Ðt for the marginal case of e \ 0.5. It is
notable that for this range of mass ratio the change in isa

chighly linear. For much larger or smaller values of k, the
O(k1@3) or O[(1 [ k)1@3] scalings of the HillÏs sphere occur
(° 3.1).

Aside from the work of Rabl & Dvorak (1988), there are
other results to which ours can be compared. As noted
above, Benest (1988, 1989, 1993, 1996) studied the a Cen-
tauri, Sirius, and g Coronae Borealis systems (looking only
at orbits in the plane of the binary). We concentrate on his
results for the a Centauri system. The two stars in the tight
binary of the a Centauri system have masses andk

A
\ 0.54

and e \ 0.52. Although Benest uses a rotating-k
B

\ 0.46
pulsating coordinate system that makes it difficult to inter-
pret his results, for a Cen B he Ðnds stability limits of about

and for the stars started at periapsea
c
\ 0.19a

b
a
c
\ 0.15a

band apapse, respectively. For a Cen A, Benest only gives the
results for the stars started at periapse. He Ðnds a

c
\ 0.23a

b
.

Our empirical expression yields anda
c
\ 0.11a

b
a
c
\

for a Cen B and A, respectively. It is unclear why0.12a
b
,

BenestÏs results indicate a much larger (up to a factor of 2)
stable region than our own, when Rabl & DvorakÏs, though
only a factor of 3 longer than BenestÏs, are so much closer to
our results. Perhaps the most unstable particles leave on
timescales between one and a few hundred binary periods,
with the remainder evolving more slowly.

Wiegert & Holman (1997) recently studied the a Centauri
system in detail and examined the dependence of stability
on inclination. For prograde orbits in the plane, they Ðnd a
limit of but used a much longer integrationa

c
\ 0.11a

b
,

time (3 ] 105 binary periods). This suggests that the strong-
est instabilities acting on timescales less than D106 binary
periods reveal themselves rather quickly (102È103 periods) ;
however, longer timescale instabilities remain a possibility.

FIG. 3.ÈCritical semimajor axis as a function of the binary mass ratio k
for e \ 0.5. The least-squares Ðt is plotted for the range of mass ratios
studied.
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sions with their data leads us to suspect that their
equations (1) and (2) may have their labels switched. Their
equation (1) matches their data for their ““ upper critical
orbit ÏÏ (our ““ critical semimajor axis ÏÏ) much better than
equation (2). If the equations are mislabeled, their empirical
expression is

a
c
\ 2.37 ] 2.76e [ 1.04e2 . (4)

Performing a least-squares Ðt in the eccentricity, our data
points produce

a
c
\ (2.278 ^ 0.008) ] (3.824 ^ 0.33)e [ (1.71 ^ 0.10)e2

(5)

with residuals indicating that this expression is within 5% of
the experimental value typically, 14% worst case. Dvorak et
al. do not provide information on their residuals but
compare their empirical expression with numerical results
for a few independent (i.e., real) binary systems. They show
slightly smaller errors (typical : within 2%; worst case :
within 10%), but their error analysis is limited to only seven
independent cases and examined only what they call the
lower critical orbit (i.e., the largest semimajor axis at which
all test particles become unstable). A comparison of our and
their data points with the empirical expressions is provided
by Figure 4. We note that our data contain Ðve points for
each value of e, corresponding to k ½ M0.1, 0.2, 0.3, 0.4,
0.5N.

Our data points follow the same general trend as those of
Dvorak et al. but typically at slightly larger values. This
result indicates that, though the edge between stable and
unstable regions may not evolve quickly, the stable region

FIG. 4.ÈCritical semimajor axis as a function of eccentricity in the
outer (P-type) region. The square data points are our results (note : four
di†erent values of k from 0.1 to 0.5 are used) ; the triangles, those of Dvorak
et al. (1989). Our least-squares Ðt (up to quadratic in e, eq. [5]) is shown by
the heavy line ; that of Dvorak et al. (see text), by a dotted line. Our
simulations were run 20 times longer (104 binary periods) and indicate that
there is an erosion of the stable outer region over time, at least at higher
eccentricities.

does erode as the timescales considered lengthen, at least at
higher binary eccentricities.

We also note that our results are comparable to Szebe-
hely & McKenzieÏs (1981) analytical results. They computed
the HillÏs stability criterion for the circular restricted three-
body case and found critical radii r B 2.24, 2.4, and 2.17a

bfor k \ 0.1, 0.24, and 0.5. Our numerical results for e \ 0.0
provide 2.25, and for the same values of k.a

c
B 2.0, 2.3a

bThe closeness of these results conÐrms the validity of these
numerical integrations and hints that the HillÏs stability cri-
terion may provide more insight into the question of the
stability of planets in binary star systems.

Last, Wiegert & Holman (1997) found that the outer criti-
cal semimajor axis for the central binary of a Cena

c
\ 3.7a

b(e \ 0.52, k \ 0.45). This value is very close to the values
derived here, from equation (4) and from equa-3.73a

b
3.8a

btion (5), though those integrations ran over 3 times longer
(32,000 binary periods) than those presented here.

5. MULTIPLE PLANET RESULTS

Now that stability limits have been derived for test par-
ticles orbiting near one of the stars in a binary system, we
consider systems with multiple planets. Innanen et al. (1997)
examined the speciÐc e†ects of a binary companion on the
orbits of the planets in our solar system. We ask a similar
but slightly di†erent question : if our own solar system had a
solar mass companion in an eccentric orbit, how large
would its semimajor axis need to be for the planets to
survive O(109 yr) ?

This question is addressed with numerical experiments.
In the Ðrst set of experiments, the system of our own Sun
and the four giant planets, Jupiter through Neptune, is aug-
mented with a solar mass companion and then numerical
integrated for times up to 109 yr. The companion was ini-
tially placed in the invariable plane of the solar system with
) \ u \ M \ 0¡. The eccentricity of the companion was
0.4. Several initial semimajor axes of the companion were
tested, and for each value of the initial semimajor axis the
system was integrated until the planetary orbits began to
cross or became hyperbolic with respect to the Sun. Semi-
major axes ranged from 150 to 500 AU in increments of 50
AU. For all companion semimajor axes except 400 and 500
AU, Uranus and Neptune cross orbits within 107È108 yr. In
the 400 and 500 AU cases, the systems survive the full 109 yr
integrations. That the 400 AU system survived but the 450
AU system did not may indicate that particular conÐgu-
rations may have additional stability arising from factors
other than the distance of the perturber.

In the second set of experiments, we test the e†ect of a
highly inclined solar mass companion on a system of multi-
ple planets. Again we start with our own Sun and giant
planets. To this we add a solar mass companion inclined at
87¡ and 75¡ to the invariable plane of the Sun and planets.
The companion is started with ) \ u \ M \ 0¡ and
e \ 0.4, and a \ 500, 750, and 1000 AU. The 500 and
750 AU runs are unstable in 107È108 yr, but the 1000 AU
runs survive 109 yr. In these runs the planets maintain their
semimajor axes, eccentricities, and relative inclinations, but
the plane of the planets regresses about the normal to the
binary orbit. The i \ 75¡ run has a 110 Myr regression
period ; the i \ 87¡ run has a 400 Myr regression period.

We can compare the results of these experiments to those
predicted by equation (1). For AU, k \ 0.5, anda

b
\ 400

e \ 0.4 we predict AU. NeptuneÏs semimajor axis isa
c
\ 59

0         binary e         1        

a p
/a

∗
a p

/a
∗

1− µ

leading to planet instability on an astronomically interesting time-
scale (see the review by Malhotra 1998). We present calculations
in x 3 that suggest that this is indeed so.

3. COMPARISON WITH HW99 AND DISCUSSION

In our determination of regions of resonance overlap, we in-
clude resonances with j1 ! 3,"4 # j2 # "1, and"j j1 þ j2j #
j3 # 0. We restrict the value of j2, since the strength of a reso-
nance scales as e0j j3jej j4j / e0j j1þj2j (eq. [3]). For a given orbital
separation, !, the ratio of j2/j1 is determined by Kepler’s third
law: !3 ¼ ( j2/j1)

2(1" "); hence, the strongest resonances have
j2 ¼ "1. In fact, we show that even the j2 ¼ "4, "3, and "2
resonances do not affect the instability boundary much. More-
over, while j3 ¼ 0 is the strongest subresonance in solar system
dynamics (in light of Jupiter’s small eccentricity), we find here
that all subresonances are essential to determine the overlap
region.

Coupling strengths are calculated using the aforementioned
series expansion formulas inMD99 (their eqs. [6.36] or [6.113]).
The location and width of each resonance are obtained as de-
scribed in the Appendix. Planet eccentricity is taken to be the
secularly forced value (eq. [8]). All coefficients are evaluated at
exact resonance, assuming the resonance width is small. In the
(!; e0) phase space, a region is designated as unstable if more
than one resonance (or subresonance) spans it. We further assign
a similar status, at the same value of e0, to the entire extent in! of
the subresonance in which this region is situated (see Fig. 1).
Depending on its orbital phase, a planet situated within a single
resonance (elsewhere spanned by additional resonances), but
that is still outside of the region of overlap proper, may (or may
not) librate into the latter. This definition of unstable regions en-
sures that all potentially unstable orbits are included. Again, our
analytical study is limited to e0 < 0:6 to ensure a converging
disturbing function.

Fig. 2.—Stability diagram for planets in a " ¼ 0:1 binary system. The solid curve connecting circles locates the maximum stable value of ! ¼ a/a0 as obtained by
HW99, while dots map regions of instability caused by resonance overlap. Resonances included in this calculation are described in the text. The instability boundary
as it exists when considering only the distinct MMRs (keeping j3 ¼ 0) is denoted by triangles. Over the eccentricity range of interest, overlap between subresonances
is the most significant source of planet instability. As e0 ! 0, widths of most resonances approach 0 except for the 2 :1 and 3:1 resonances. The dashed curve shows
the lower confine of a 3:1 resonance; overlap between subresonances within the 3 :1 MMR can explain instability in circular binaries. Inset: Results of numerical
integration over a selected region of !-e0 space. Dashes represent planet orbits that remain stable for more than 3000 binary periods; squares represent unstable
orbits. Horizontal lines indicate centroid locations of certain MMRs that are responsible for the jutting peninsulas. At each e0-value, j2 ¼ "1 MMRs yield the
shortest period unstable orbits. Stability for points near the instability boundary are sensitive to the initial conditions. Regions of resonance overlap coincide with
that for planet instability, and there is little evidence for bounded chaos.
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A: We learn a lot by modeling 
system dynamics alone

Q: What do we do in the absence of exquisite 
Kepler light curves, and great software packages?
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Example I: Masses and Formation of HR 8799
1414 FABRYCKY & MURRAY-CLAY Vol. 710

Figure 9. Simulation of the nominal masses, which is initially protected from
close encounters by the 2:1 resonance between planets c and d, but it is destroyed
after 35.6 Myr due to interactions between planets b and c (see Table 3 for initial
conditions). Panel (a): semimajor axis, periapse, and apoapse for the three
planets as a function of time; panel (b)—dots: resonance angle every ∼105 yr
(libration is rapid, on nearly orbital timescales, and is not well-sampled) and
lines: its running envelope, as a function of time; panels (t1)–(t4) phase plot of
the resonance angle, over short durations, as labeled above panel (b).

Over such brief intervals, the libration amplitude holds rather
steady, except at the very end of the integration. In this example,
the instability causes an encounter between planets c and d at
35.6 Myr.

Compared to the non-resonant cases, this system showed
considerable longevity: it lasts long enough to be a plausible
model for the observed system. We have found a way to calm
the strongest interactions, those that cause instability after a
few thousand orbits: a resonance between planets c and d that
protects them from close encounters. This resonance protects
the system until the somewhat longer timescale interactions
between b and c cause an instability. But those interactions can
also be suppressed by postulating yet another resonance. We
integrated the nominal masses with initial conditions as above
except ad = 23.42 AU instead of 23.32 AU (Table 3). The
resulting system showed resonance protection between planets
b and c. The 2:1 resonance is active, which is possible far from
its nominal location because the pericenters are precessing on
nearly orbital timescales. In Figure 10, we show this system
lasting for 160 Myr. In this example, the resonance angle φd

is librating with small amplitude the whole time (panels (b)
and (c)), and the resonance angle φc,out = 2λb − λc − #c

spends more time near 0◦ (panels (d) and (e)), indicating the
system is protected by both resonances. Even after 160 Myr
of evolution, we have verified that there are epochs at which
this solution fits the astrometric data of Table 1. We found

Figure 10. Simulation of the nominal masses, lasting for 160 Myr with no
signs of imminent instability, due to a double resonance (see Table 3 for initial
conditions). Panels are as in Figure 9. The resonance angles are defined as
φd = 2λc − λd − #d and φc,out = 2λb − λc − #c .

printouts for which a rotation in the plane of the sky matched
the simulated to the observed positions within a fractional error
of 1% (more printouts would likely find a closer match), and
then we calculated χ2 based on the velocities of Table 1. The
resulting χ2 = 11.4 was both acceptable and quite competitive
with the models of Section 2.

The next step is to understand how these resonances protect
the system as a function of planetary mass. For instance, Figure 7
shows four integrations in which the resonance allows planets of
masses Mb = 5, and Mc = Md = 7 MJup to be stable for 30 Myr,
which is consistent with the observed system. But can the system
survive at the nominal masses with only one resonance? How
high can the masses go in the double resonance? In Figure 11,
we plot the time to instability for a wide range of planetary mass
scalings. We use initial conditions corresponding to the nominal
face-on, circular orbits (non-resonant), the initial conditions for
Figure 9 (singly resonant), and parameters chosen to maximize
stability of the double resonance for massive planets. All are
listed in Table 3. Because the resonant locations shift with
increasing planetary mass, the ideal orbital parameters for stable
resonance depend on the masses. In a suite of integrations, we

Fabrycky & Murray-Clay 2010
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Over such brief intervals, the libration amplitude holds rather
steady, except at the very end of the integration. In this example,
the instability causes an encounter between planets c and d at
35.6 Myr.

Compared to the non-resonant cases, this system showed
considerable longevity: it lasts long enough to be a plausible
model for the observed system. We have found a way to calm
the strongest interactions, those that cause instability after a
few thousand orbits: a resonance between planets c and d that
protects them from close encounters. This resonance protects
the system until the somewhat longer timescale interactions
between b and c cause an instability. But those interactions can
also be suppressed by postulating yet another resonance. We
integrated the nominal masses with initial conditions as above
except ad = 23.42 AU instead of 23.32 AU (Table 3). The
resulting system showed resonance protection between planets
b and c. The 2:1 resonance is active, which is possible far from
its nominal location because the pericenters are precessing on
nearly orbital timescales. In Figure 10, we show this system
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spends more time near 0◦ (panels (d) and (e)), indicating the
system is protected by both resonances. Even after 160 Myr
of evolution, we have verified that there are epochs at which
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signs of imminent instability, due to a double resonance (see Table 3 for initial
conditions). Panels are as in Figure 9. The resonance angles are defined as
φd = 2λc − λd − #d and φc,out = 2λb − λc − #c .

printouts for which a rotation in the plane of the sky matched
the simulated to the observed positions within a fractional error
of 1% (more printouts would likely find a closer match), and
then we calculated χ2 based on the velocities of Table 1. The
resulting χ2 = 11.4 was both acceptable and quite competitive
with the models of Section 2.

The next step is to understand how these resonances protect
the system as a function of planetary mass. For instance, Figure 7
shows four integrations in which the resonance allows planets of
masses Mb = 5, and Mc = Md = 7 MJup to be stable for 30 Myr,
which is consistent with the observed system. But can the system
survive at the nominal masses with only one resonance? How
high can the masses go in the double resonance? In Figure 11,
we plot the time to instability for a wide range of planetary mass
scalings. We use initial conditions corresponding to the nominal
face-on, circular orbits (non-resonant), the initial conditions for
Figure 9 (singly resonant), and parameters chosen to maximize
stability of the double resonance for massive planets. All are
listed in Table 3. Because the resonant locations shift with
increasing planetary mass, the ideal orbital parameters for stable
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Over such brief intervals, the libration amplitude holds rather
steady, except at the very end of the integration. In this example,
the instability causes an encounter between planets c and d at
35.6 Myr.

Compared to the non-resonant cases, this system showed
considerable longevity: it lasts long enough to be a plausible
model for the observed system. We have found a way to calm
the strongest interactions, those that cause instability after a
few thousand orbits: a resonance between planets c and d that
protects them from close encounters. This resonance protects
the system until the somewhat longer timescale interactions
between b and c cause an instability. But those interactions can
also be suppressed by postulating yet another resonance. We
integrated the nominal masses with initial conditions as above
except ad = 23.42 AU instead of 23.32 AU (Table 3). The
resulting system showed resonance protection between planets
b and c. The 2:1 resonance is active, which is possible far from
its nominal location because the pericenters are precessing on
nearly orbital timescales. In Figure 10, we show this system
lasting for 160 Myr. In this example, the resonance angle φd

is librating with small amplitude the whole time (panels (b)
and (c)), and the resonance angle φc,out = 2λb − λc − #c

spends more time near 0◦ (panels (d) and (e)), indicating the
system is protected by both resonances. Even after 160 Myr
of evolution, we have verified that there are epochs at which
this solution fits the astrometric data of Table 1. We found

Figure 10. Simulation of the nominal masses, lasting for 160 Myr with no
signs of imminent instability, due to a double resonance (see Table 3 for initial
conditions). Panels are as in Figure 9. The resonance angles are defined as
φd = 2λc − λd − #d and φc,out = 2λb − λc − #c .

printouts for which a rotation in the plane of the sky matched
the simulated to the observed positions within a fractional error
of 1% (more printouts would likely find a closer match), and
then we calculated χ2 based on the velocities of Table 1. The
resulting χ2 = 11.4 was both acceptable and quite competitive
with the models of Section 2.

The next step is to understand how these resonances protect
the system as a function of planetary mass. For instance, Figure 7
shows four integrations in which the resonance allows planets of
masses Mb = 5, and Mc = Md = 7 MJup to be stable for 30 Myr,
which is consistent with the observed system. But can the system
survive at the nominal masses with only one resonance? How
high can the masses go in the double resonance? In Figure 11,
we plot the time to instability for a wide range of planetary mass
scalings. We use initial conditions corresponding to the nominal
face-on, circular orbits (non-resonant), the initial conditions for
Figure 9 (singly resonant), and parameters chosen to maximize
stability of the double resonance for massive planets. All are
listed in Table 3. Because the resonant locations shift with
increasing planetary mass, the ideal orbital parameters for stable
resonance depend on the masses. In a suite of integrations, we
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disk opacity have grown up to 1 mm without altering the dust-
to-gas ratio, Equation (12) implies that in the geometric optics
limit κ0 = 0.072 cm2 g−1. In this case, the minimum radius is
pushed inward to 26 AU (see also Nero & Bjorkman 2009).

Thus far we have determined the minimum masses allowed as
a function of radius with the temperature as a free parameter. We
now calculate actual disk temperatures, which at large radii are
typically higher than the minima. In this case, we must evaluate
fragment masses using Equation (6).

4.3. Initial Fragment Masses with Astrophysical Disk
Temperatures

To consider the case favorable to GI planet formation, we
consider the lowest plausible disk temperatures in order to
minimize the fragment masses. We estimate the disk temperature
using the passive flared disk models of Chiang & Goldreich
(1997). This model likely underestimates the temperatures
in actively accreting systems because it ignores significant
“backheating” from the infall envelope and surrounding cloud
(Chick & Cassen 1997; Matzner & Levin 2005). Although
viscous heating will also contribute to the temperature, we
ignore its modest contribution to obtain the lowest reasonable
temperatures and fragment masses. Disk irradiation dominates
over viscous heating in this regime (see Appendix B).

We consider the inner region where the disk is optically thick
to blackbody radiation. In this regime, the temperature of a flared
disk in radiative and hydrostatic equilibrium is

Tm =
(αF

4

)1/4
(

R∗

r

)1/2

T∗ ∝ L2/7r−3/7, (19)

where αF measures the grazing angle at which starlight hits the
disk; αF is dependent on the degree of disk flaring measured at
the height of the photosphere (Chiang & Goldreich 1997). Grain
settling may reduce the height of the photosphere (set here to
4 times the scale height) and thus αF . For the standard radia-
tive equilibrium model, the disk flaring scales approximately as
H/r ∝ r2/7. We shall find when we calculate the disk tempera-
ture that a gravitationally unstable disk remains optically thick,
justifying the use of this formula.

To estimate the stellar luminosity we use the stellar evolution
models of Krumholz & Thompson (2007), which include both
nuclear burning and accretion energy. The accretion luminosity
depends on both the current accretion rate and the accretion
history (in so far as it effects the stellar radius), so we obtain
the lowest luminosity estimates by allowing the star to accrete
at a constant, low accretion rate. We use the stellar luminosity
after accreting to 90% of its current mass (or 1.35 M$ assuming
roughly 10% is still in the disk). We choose an accretion rate
of 10−7 M$ yr−1 as a lower bound because a star accreting at
a lower accretion rate throughout its history has a formation
timescale that is too long. Accretion rates of an order of
magnitude larger give comparable luminosity (when the star has
only reached 1.35 M$) to the present-day luminosity of 5 L$
(Marois et al. 2008). Lowering the accretion rate below this
value does not significantly lower the stellar luminosity because
the accretion energy contribution is small.

The luminosity calculated for an accretion rate of
10−7 M$ yr−1 translates to temperatures of

T ≈ 40 K
( r

70 AU

)−3/7
, (20)

which we shall use as our fiducial temperature profile. In the
outer regions of the disk where fragmentation is allowed, the
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Figure 3. Depiction of the current configuration of HR 8799 and formation
constraints for realistic disk temperatures. We show the lowest expected
irradiated disk temperatures (blue) and corresponding fragment masses (gray),
as a function of radius. The lower bound on both regimes (burgundy) is set
by the irradiation model described in Section 4.3, with Ṁ = 10−7 M$ yr−1.
The upper boundary is set by the current luminosity of HR 8799, ∼5 L$.
The green dash-dotted line shows the mass with disk temperatures of 10 K,
a lower limit provided by the cloud temperature. The vertical line shows the
critical fragmentation radius for the ISM opacity law; fragmentation at smaller
radii requires grain growth. Fragment masses are shown for radii at which the
irradiation temperatures are high enough to satisfy the cooling time constraint
of Equation (17). At smaller radii, fragmentation is possible at higher disk
temperatures, but the resulting fragments have correspondingly higher masses,
and planet formation is not possible.
(A color version of this figure is available in the online journal.)

disk temperatures are of order 30–50 K. These temperatures
exceed the minimum threshold for fragmentation, and so the
mass of fragments will be set by Equation (6).

Other analytic and numerical models of stellar irradiation pre-
dict temperatures in agreement with or higher than our estimate
(Rafikov & De Colle 2006; Offner et al. 2009). Similarly, mod-
els of disks in Ophiuchus have similar temperatures for 1 Myr
old stars of lower mass (and thus luminosity), implying that our
model temperatures are low, though not unrealistic (Andrews
et al. 2009).

In Figure 3, we illustrate the constraints on fragment masses
from this irradiation model, calculated using Equation (6).
We show the fiducial disk temperatures of Equation (20),
along with temperatures consistent with luminosities up to
the present-day luminosity. For our fiducial opacity laws, the
expected fragment masses are only marginally consistent with
GI planet formation—fragments form near the upper mass limit
of 13MJup. Lower opacities produced by grain growth might
allow fragmentation into smaller objects at closer radii. Whether
grain growth has proceeded to this extent in such young disks
is unclear.

5. GROWTH OF FRAGMENTS AFTER FORMATION

For realistic disk temperatures, it is conceivable that frag-
ments may be born at several MJup. We now consider their
subsequent growth, which may increase their expected mass by
an order of magnitude or more.

The final mass of a planet depends sensitively on numerous
disk properties (effective viscosity, column density, scale height)
and the mass of the embedded object. In order to constrain the

• Formation models prefer low masses or 
migration scenarios that don’t favor 
resonance
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Kepler 16b

Credit: HST

Semi-major axis
17 536 ± 4 km to system barycenter, 19 571 ± 4 
km to the center of Pluto
Eccentricity
0.002 2
Orbital period
6.387 230 4 ± 0.000 001 1 d
(6 d 9 h 17 m 36.7 ± 0.1 s)
Inclination
0.001°
(to Pluto's equator)
119.591 ± 0.014°
(to Pluto's orbit)
112.783 ± 0.014°
(to the ecliptic)
Mass Pluto
(1.305 ± 0.007)×1022kg[4]
Mass Charon
(1.52 ± 0.06)×1021 kg[2]
(2.54×10−4 Earths)
(11.6% of Pluto)
Mass Nix
5×1016–2×1018 kg[4]
Mass Hydra
1×1017–9×1017 kg[3]

Kepler 16bPluto-Charon

Friday, July 27, 2012
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Decomposing the Pluto and Charon System

• Understanding stability in a multi-planet, binary system not possible through any 3 
body arguments

• Stable as test particles about a binary

• Any two satellites are stable about P-C barycenter

• Three satellites about P-C barycenter are stable for some masses

• Full System (numerically)

Pluto
Charon

p5
Nix Hydra

p4

Friday, July 27, 2012



Decomposing the Pluto and Charon System

• Understanding stability in a multi-planet, binary system not possible through any 3 
body arguments

• Stable as test particles about a binary

• Any two satellites are stable about P-C barycenter

• Three satellites about P-C barycenter are stable for some masses

• Full System (numerically)

Pluto
Charon

p5
Nix Hydra

p4

Friday, July 27, 2012



Decomposing the Pluto and Charon System

• Understanding stability in a multi-planet, binary system not possible through any 3 
body arguments

• Stable as test particles about a binary

• Any two satellites are stable about P-C barycenter

• Three satellites about P-C barycenter are stable for some masses

• Full System (numerically)

Pluto
Charon

p5
Nix Hydra

p4
BC

Friday, July 27, 2012



Decomposing the Pluto and Charon System

• Understanding stability in a multi-planet, binary system not possible through any 3 
body arguments

• Stable as test particles about a binary

• Any two satellites are stable about P-C barycenter

• Three satellites about P-C barycenter are stable for some masses

• Full System (numerically)

Pluto
Charon

p5
Nix Hydra

p4
BC

Friday, July 27, 2012



Decomposing the Pluto and Charon System

• Understanding stability in a multi-planet, binary system not possible through any 3 
body arguments

• Stable as test particles about a binary

• Any two satellites are stable about P-C barycenter

• Three satellites about P-C barycenter are stable for some masses

• Full System (numerically)

Pluto
Charon

p5
Nix Hydra

p4

Friday, July 27, 2012



Decomposing the Pluto and Charon System

• Understanding stability in a multi-planet, binary system not possible through any 3 
body arguments

• Stable as test particles about a binary

• Any two satellites are stable about P-C barycenter

• Three satellites about P-C barycenter are stable for some masses

• Full System (numerically)

Pluto
Charon

p5
Nix Hydra

p4

Friday, July 27, 2012



Decomposing the Pluto and Charon System

• Understanding stability in a multi-planet, binary system not possible through any 3 
body arguments

• Stable as test particles about a binary

• Any two satellites are stable about P-C barycenter

• Three satellites about P-C barycenter are stable for some masses

• Full System (numerically)

Pluto
Charon

p5
Nix Hydra

p4

Friday, July 27, 2012



6 Youdin, Kratter & Kenyon

Fig. 3.— Median crossing time, tc, versus initial a [as ∆a = a − (5 × 10
4
km)] and e of P4. The mass of Nix and Hydra is labelled as

both A (their shared albedo for ρ = 1 g cm
−3

) and m1 (mass relative to the minumum mass at A = 1). The color scale for the tc is above

each panel. Crossing times are longer for lower masses of Nix and Hydra and lower eccentricities of P4. The semi-major axis dependence

is more complicated, due to the effect of resonances. See text for details.

found faster and more reliable convergence by fitting the
stroboscopic orbits to a (fourth order) cosine series, and
measuring the radial dispersion about that best fit orbit.

4.1.2. Implementation as Initial Conditions

In §5.3 we present integrations where Nix and Hydra
perturb P4 from these most circular orbits. The ini-
tial orbital phase along the most circular orbit must be
consistent with the initial orbital phase of the binary.
This initial phase is not unique as P4 can be advanced
along the orbit by an integer number of Charon periods.
For different orbital phases, the position of P4 changes
relative to Nix and Hydra. Due to the sensitive de-
pendence on initial conditions, stability timescales also
change. Thus our simulations sample many (typically
25) initial phases of P4 for every trial orbital period.

4.2. Properties of the Most Circular Orbits

Fig. 2 plots the time evolution of the most circular test
particle orbits in the vicinity of P4. These orbits only
include the perturbations from the Pluto-Charon binary,
and not those due to Nix or Hydra. Each curve represents
a different orbital period, ranging from 4.8 to 5.2 Pluto-
Charon periods. In the vicinity of the 5:1 resonance with
Charon, none of these orbits are in resonance.
The left panel plots radial distance from the Pluto-

Charon barycenter. The non-circularity, given by the
magnitude of the radial excursions relative to the mean

r, is ∆r/(2r) ∼ 1.8× 10−3 . In detail the excursions are
somewhat larger for the closer orbits (up to 1.97× 10−3)
and smaller for the more distant ones (down to 1.65 ×
10−3).
The periodic radial oscillations have well-understood

timescales. The faster oscillations correspond to the syn-
odic period with Charon (∼ 5/4 Charon periods) and the
first harmonic at half that period. The slower oscillations
are on the epicyclic period (∼ 5 Charon periods) of the
test particle itself.
These epicyclic oscillations (but not the faster synodic

response) vanish for the coldest orbits about a circular
binary, as shown by Lee & Peale (2006). (Our method
reproduces this result for a circular Charon orbit.) The
epicyclic oscillations are only modestly larger than the
synodic timescale variations. When Nix and Hydra are
introduced to numerical integrations they rapidly excite
a larger epicyclic eccentricity. Thus Charon’s small (and
physically questionable) eccentricity likely has a weak ef-
fect on orbital stability.
The middle and right panels of Fig. 2 plot the oscu-

lating (instantaneous) Keplerian a and e, respectively,
about the barycenter. These panels are instructive in
demonstrating the non-Keplerian nature of these orbits.
The Keplerian a is both systematically larger than the
cylindrical radius and varies more significantly with time.
The Keplerian e oscillates and reaches values ∼ 0.015,
much larger than the actual radial excursions. This plot

Circumbinary Multi-planet stability

• Locations fixed by 
observations, so vary 
masses of Nix & Hydra

• populate with potential 
orbits of new satellite 
(test particle) and run for 
1 billion Pluto-Charon 
orbits

• Examine lifetime as a 
function of semi-major 
axis and eccentricity

Youdin, Kratter, & Kenyon, 2012 
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Most Circular Orbit: Beware non-Keplerian orbits

• Orbits about binary are significantly non-Keplerian (Lee & Peale 2006)

• To get “circular” orbits, cannot simply set e=0

• Are cold orbits more stable?
4 Youdin, Kratter & Kenyon

Fig. 2.— Evolution of the “most circular” test particle orbits about Pluto-Charon versus time. The orbits are in the vicinity of P4 and

neglect perturbations from Nix and Hydra. Left: Radial distance from the Pluto-Charon barycenter. The denser packing of lines near the

middle of the plot is from finer sampling near the 5:1 resonance. Center, Right: Keplerian semi-major axis and eccentricity (measured from

the Pluto-Charon barycenter). The oscillation of these elements demonstrates the non-Keplerian nature of orbits about the Pluto-Charon

binary.

For the mass scalings in Equation (2), P4 is separated

from Nix by 29
√
ANix and from Hydra by 17

�
AHyd Hill

radii (of Nix and Hydra respectively). Separation by

fewer than 3.5RH would require either ANix < 0.014 or

AHyd < 0.042. Such low albedos and thus high masses

are inconsistent with the T08 (1σ) upper mass limits.

The more stringent mass limits that we find ensure that

P4 is stable by the Hill stability criterion for circular

orbits.

Since the eccentricity of P4 is not well constrained, we

also consider the stability of eccentric test masses. In

the restricted three body problem, the conserved Jacobi

constant is more simply expressed as the approximately

conserved Tisserand parameter

CT =
a�

2a
+

�
a

a�
(1− e2) cos i , (5)

where a, e, i (inclination) refer to the test body (P4) and

a� refers to the perturber (Nix or Hydra). The stability

boundary of circular, coplanar (e = i = 0) orbits at

|a − a�| = 3.5RH defines a critical CT. (Restricted 3

body) stability for arbitrary e and i holds for CT above

the critical value.

Fig. 1 plots the critical CT curves, sometimes called

“Tisserand tails.” The outer and inner tails of Nix and

Hydra, respectively, are relevant for interactions with P4.

For low Nix and Hydra masses (the A = 1 curves) the

tails would only cross an eccentric P4, eP4 � 0.1. With

higher Nix and Hydra masses (the A = 0.05 curves),

Hydra’s Tisserand tail intersects plausible P4 orbits at

lower eC, especially if P4 lies on the outer edge of allowed

orbits.

While a considerable simplification, these considera-

tions from the restricted three body problem demon-

strate that higher masses for Nix and Hydra severly re-

strict the allowed orbits of P4.

3.3. Stability of Three Satellites

Still ignoring perturbations from the central binary, we

now consider three interacting satellites about a central

mass. Sharp stability boundaries no longer exist, but the

timescale to orbit crossing can be studied numerically.

Most investigations of multi-planet stability consider

roughly equal mass companions with evenly spaced or-

bits, in terms of Hill radii. Chambers et al. (1996, here-

after C96) defined the mutual Hill radius, as

R�
H
=

�
µi + µi+1

3

�1/3 ai + ai+1

2
(6)

for neighboring planets (i and i+1). This definition does

not reduce to the standard Hill radius when µi → 0.

This deficiency is readily corrected by a mass-weighted

averaging of the semi-major axes. This distinction is

insignificant when the satellite masses are similar, but is

relevant here due to the low mass of P4.

C96 measured the orbit crossing timescale, tc, for sys-
tems of three equal mass planets, with planet-star mass

ratios ranging from µ = 10
−9

to µ = 10
−5

. Relative

to the period of the inner planet, P1, we fit the data in

Figure 4 of C96 as

log
10
(tc/P1) = −9.11 + 4.39∆�µ1/12 − 1.07 log(µ) , (7)

where ∆�
is the orbit separation in mutual Hill radii. A

similar functional form holds for systems of > 3 planets

(Faber & Quillen 2007). Since ∆�µ1/12 ∝ µ−1/4
, relevant

orbit separations scale as µ1/4
with 3 (or more) satellites,

unlike the µ1/3
scaling with two satellites. Three-body

resonances are the likely cause of this distinction (Quillen

2011).

Unequal masses (of P4 in particular) make direct ap-

plication of these results difficult. To allow simple esti-

mates, we make a range of possible assumptions: µ as

the average of all 3 satellites or just Nix and Hydra; the

mutual Hill radius defined as in Equation (6) or with den-

sity weighted ai. In all cases the minimum mass A = 1

case is stable, with crossing times > 10
30

yrs. For the

higher mass A = 0.05 case, tc � 3 × 10
6
yrs, implying

rapid instability.

Even neglecting binary perturbations, the stability of

Pluto’s minor moons depends strongly on their assumed

Youdin, Kratter, & Kenyon, 2012 
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Dynamics tell us that Nix & Hydra are bright

Youdin, Kratter, & Kenyon, 2012
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Fig. 6.— Similar to Fig. 4, but for crossing times, tc, of the “most
circular” initial orbits with period ratios (to Charon) between 4.93
and 5.13. Blue squares give the median over both period and
initial phase. Green squares (and red squares) give the longest
of the median (and 90th percentile) tc at each period. Yellow
squares give the longest tc of all orbits. For reference the solid
line gives powerlaw fit to the median tc for the “core” sample of
Keplerian initial conditions. The most circular orbits give longer
tc and thereby allow larger Nix and Hydra masses.

C5:1.
Fig. 6 plots crossing times versus the mass of Nix and

Hydra, with powerlaw fits overplotted. We restrict the
range of periods to the observational constraint (S11),
but with double the uncertainty for inclusiveness. The
statistical measures of tc include: (1) “median,” which
takes the median of the values given by the symbols in
Fig. 5 (themselves median values over phases); (2) “max
median,” the longest phase-median tc, i.e. highest sym-
bol; (3)“max 90%,” the longest 90th percentile tc, i.e.
highest upper errorbar; and finally (4) “longest,” simply
the longest tc at any phase or period considered.
For reference, the median tc for the relatively stable

“core” sample of initial Keplerian parameters is over-
plotted. Compared to this reference case, the cross-
ing timescales for the most circular orbits are signifi-
cantly longer, especially toward the (more realistic) lower
masses of Nix and Hydra. Longer crossing times equate
to higher allowed masses (and lower albedos) for Nix and
Hydra.
Extrapolating along the powerlaw fits in Fig. 6 shows

that A � 0.3 is needed to achieve tc > 4 Gyr. This limit
is more inclusive than the A � 0.5 found in §5.2.2. We
cannot definitely rule out even lower albedos. As already
discussed, extrapolation could fail.
Characterizing the most stable orbit is difficult. We

do not base our estimate on the absolute longest lived
orbits, which loosen our constraints. As shown in Fig. 6,
the longest tc’s do not follow a simple powerlaw and are
therefore unreliable for extrapolation. Even without ex-
trapolation, the longest tc’s are highly subject to sam-
pling, especially considering the pronounced period and

phase dependence shown in Fig. 5. It is also unclear if
P4 is likely to inhabit the most stable orbits, especially if
those orbits occupy a tiny volume of phase space. Small
neglected effects (such as collisions, see §3.4) could eas-
ily remove P4 from narrow pockets of parameter space.
Thus, we base our constraints not on the absolutely most
stable orbit, but on orbits among the most stable.

6. SUMMARY AND CONCLUSIONS

We study the long term stability of P4, the temporary
name for the moon orbiting the Pluto-Charon binary be-
tween Nix and Hydra (S11). Our numerical integrations
constrain both the orbit of P4 and the masses of Nix and
Hydra. These constraints are coupled, so improved de-
termination of P4’s orbit will help refine the masses of
Nix and Hydra and vice-versa. We summarize our main
results:

• Low eccentricity orbits of P4 are significantly more
stable. Our integrations strongly disfavor P4 orbits
with e > 0.02, as shown in Figs. 3 and 4.

• Period ratios (of P4 to Charon) between 4.98 and
5.01 are unstable on short timescales. Slightly
larger or smaller period ratios are significantly
more stable, as shown in Fig. 5. Combined with
the observed mean motion (S11), our results favor
orbits just outside the 5:1 commensurability with
Charon.

• Even the most stable P4 orbits only survive if Nix
and Hydra are sufficiently low in mass. We esti-
mate MNix � 5× 1016 kg and MHyd � 9× 1016 kg
are required for the stability of P4 over the age of
the Solar System. The mass ratio of Nix and Hy-
dra is fixed in the simulations, so these constraints
are not independent.

• The albedos of Nix and Hydra are correspondingly
constrained to A � 0.3, assuming an internal den-
sity of 1 g cm−3. Higher density rocky bodies would
require even higher albedos.

• The above mass and albedo constraints rely on ex-
trapolation of simulations with higher masses, as
shown in Fig. 6. Direct simulations alone disfavor
A � 0.16 for which the orbit crossing time of P4 is
� 107 yr.

Our mass limits based on the stability of P4 are a fac-
tor of 20 and 10 lower than the (1-σ) astrometric upper
limits of T08. The rendezvous of the New Horizons satel-
lite with the Pluto system in July 2015 should greatly
improve astrometric mass constraints. Neglecting P4,
Beauvalet et al. (2012) combine current data with simu-
lated New Horizons observations to show that mass er-
rors on Hydra will be reduced to ∼ 4×1016 kg. This limit
is already small enough to test our predictions. Hopefully
the inclusion of P4 will further tighten astrometric mass
constraints. Ultimately, combining astrometry with long
term stability should provide the tightest and most ro-
bust dynamical constraints.
Our results generally support the leading model for the

origin of the Pluto system: a giant impact that produces
the Pluto-Charon binary (McKinnon 1989; Canup 2005)

Pluto’s Circumbinary Chaos 7

demonstrates clearly why setting the initial, osculating
e = 0 does not give the most circular orbit.

5. RESULTS FOR LONG-TERM STABILITY

5.1. 4+N Body Integrations

We study the stability of P4 with a suite of 4 + N body
integrations. In these simulations, the four massive bod-
ies are Pluto, Charon, Nix and Hydra. Treating P4 as
a massless test particle allows simultaneous investigation
of many trial orbits. We follow each test particle until it
crosses the orbit of either Nix or Hydra. (No significant
perturbations to the orbits of the massive bodies occurs
in the simulations.) Integrations were performed using
the 15th order Radau integrator (Everhart 1985), as im-
plemented by the Swifter software package.4 Details con-
cerning code performance are deferred to the appendix.
Between different sets of simulations, we vary the un-

certain masses of Nix and Hydra, keeping their mass ratio
fixed at MNix/Mhyd = 0.575. The range of Nix and Hy-
dra masses considered corresponds (for a density of 1 g
cm−3) to albedos from 0.03 to 0.24. Integrations were
run with albedos up to 0.4 (µNix ≈ 10−6), however only
10 – 30% of test particles suffered orbit crossing after
∼ 108 Charon orbits, making systematic investigations
too expensive.
The initial conditions for the massive bodies are given

in Table 1. The initial orbits for the test particles were
chosen by two different methods. The first suite of sim-
ulations, described in §5.2, populated P4 orbits by ran-
domly sampling Keplerian elements. The second suite
of simulations, summarized in §5.3 initializes P4 on the
“most-circular” orbits about Pluto-Charon.

5.2. Uniformly Sampled Keplerian Orbits

For each adopted mass of Nix and Hydra, we integrate
5000 P4 orbits with initial conditions chosen randomly
from a uniform distribution of Keplerian osculating ele-
ments.5 The semimajor axes are restricted to the range

56632 km < a < 58832 km , (8)

or a/aPC = 2.89 – 3.01. Eccentricity and inclination
restricted to e < 0.05 and i < 0.5◦. The modest range in i
was insignificant for our results and will not be discussed
further. Other Keplerian angles (argument of pericenter,
longitude of ascending node and mean longitude) were
sampled over the full (2π) range. Fig. 1 compares the
sampled orbits to the nominal location of mean motion
resonances as well as Nix and Hydra crossing trajectories.

5.2.1. Mapping a− e Space

Fig. 3 maps the median stability timescale versus ini-
tial a and e for several Nix and Hydra masses. As shown
by the colorbars on each map, crossing times increase
significantly as the mass of Nix and Hydra drops from
high to low (upper left to lower right plots). Crossing
times are always short at higher a and e (upper right of
each plot). Interactions with Hydra are the likely culprit,
consistent with the Tisserand parameter curves in Fig. 1.

4 Publicly available at http://www.boulder.swri.edu/swifter/.
5 We use Jacobian elements are measured relative to the barycen-

ter of Pluto, Charon and Nix.

Fig. 4.— Crossing timescale for P4 versus the masses of Nix
and Hydra. The bottom axis scales masses relative to the albedo
one case. The top axis shows the corresponding albedo (for
ρ = 1 g cm−3). Circles give the crossing times from simulations.
Dashed lines are powerlaw fits to the mass dependence. Colors
denote different sets of initial P4 orbits. From bottom to top, me-
dian crossing times are shown for: (blue:) the full range of orbital
parameters; (green:) e < 0.015; (black) a stable “core” with both
e < 0.015 and 5.70×105 km < a < 5.75×105 km. Finally red data
points give the 90th percentile of longest lived orbits in the core.
If extrapolation can be trusted, Nix and Hydra require A � 0.5 to
ensure the stability of P4 over the age of the Solar System.

At low eccentricity, crossing times are longest, and dis-
play a complex dependence on a. Resonances play a key
role. Indeed resonance overlap is a generic cause of or-
bital chaos (Mudryk & Wu 2006). From the approximate
resonance locations in Fig. 1, specific resonances can be
implicated.
The 5:1 resonance with Charon helps destabilize the

region near a ∼ 5.8 × 104 km (∆a ∼ 8.0[×103 km]
as labelled in Fig. 3) at lower masses. The 4:5 reso-
nance with Hydra shortens crossing times between 5.65 �
a/(104 km) � 5.70 (i.e. 6.5 � ∆a/(103 km) � 7.0), for
the highest mass (upper left). This change in the promi-
nence of different resonances is expected as the masses
of Nix and Hydra vary relative to Pluto-Charon.

5.2.2. Median Crossing Times: Measured and Extrapolated

Fig. 4 shows how crossing times scale with the masses
of Nix and Hydra. Median timescales are plotted for
three subsets of the initial orbital parameters: (1) all
initial orbits, (2) only e < 0.015, and (3) the stable “core”
of parameters with both e < 0.015 and 5.70× 105 km <
a < 5.75 × 105 km. For the “core” sample, we also plot
the 90th percentile of crossing time (beyond which only
10% of particles survive). At any mass, crossing times
increase as cuts become more selective. The “missing”
data points for low mass cases occur where P4 orbits were
so stable that the median (or 90th percentile) timescale
was not reached after 108 Pluto-Charon periods.
The dependence of crossing time on the mass, m, of

“Keplerian” “Circular”

2 Youdin, Kratter & Kenyon

albedos and sizes. Once albedos and sizes are determined
by New Horizons, internal densities can be determined.
The compositional diversity of bodies in the same system
is in turn a powerful input to formation theories (Benec-
chi et al. 2009; Stern 2009).
As the prototypical — and also the second most mas-

sive and best studied — Kuiper Belt object, Pluto rep-
resents a critical stage in planet formation. As a transi-
tional object, it hold clues both to the processes that
form the first planetesimals in gas disks (Chiang &
Youdin 2010; Youdin 2010) and the collisional coagula-
tion and destruction that in some places produces planets
and in others produces debris disks (Kenyon & Luu 1999;
Kenyon 2002; Kenyon & Bromley 2010).
We begin in §2 by describing parameters of the Pluto-

Charon system, establishing which parameters are rea-
sonably well constrained, and which must be varied in
our simulations. Section 3 describes basic stability con-
siderations for the Pluto-Charon system. Section A finds
the most circular orbits about the Pluto-Charon binary, a
non-trivial task due to the non-Keplerian nature of orbits
about a binary (Lee & Peale 2006). Readers interested
in the main results can skip to §4, which presents our
numerical integrations of the Pluto system. In §5, we
summarize our main findings and discuss their implica-
tions exoplanet studies in §5.1. The appendix addresses
technical aspects of the integrations including the ini-
tialization of particles on the most circular orbit about a
binary (§A) and details of the numerical code (§B).

2. PLUTO SYSTEM PARAMETERS

2.1. Size and Mass of Nix, Hydra and P4

Nix, Hydra and P4 are detected in reflected visible
light. Their diameters depend on their unknown albedos,
A, as

DNix ≈ 25A−1/2 km (1a)

DHyd ≈ 30A−1/2 km (1b)

DP4 ≈ 8A−1/2 km . (1c)

To relate apparent magnitudes to size, we adopt a
Charon-like phase coefficient (Buie et al. 1997, T08).
Mass estimates from photometry rely on an assumed

density. With ρ1 = ρ/(1 g cm−3), the mass ratios rela-
tive to Pluto are

µNix ≈ 6.4× 10−7ρ1A
−3/2 (2a)

µHyd ≈ 1.1× 10−6ρ1A
−3/2 (2b)

µP4 ≈ 2.0× 10−8ρ1A
−3/2 , (2c)

for Nix, Hydra, and P4. To express (without loss of
generality) masses in terms of albedos, and not the more

cumbersome Aρ−2/3
1

, we assume ρ1 = 1, unless stated
otherwise. Neglecting the possibility of high porosity, we
also refer to A = ρ1 = 1 as the “minimum mass” case.
The orbit solution of T08 gives µNix = (4.4±3.9)×10−5

and µHyd = (2.5 ± 4.9) × 10−5. The large uncertainties
reflect the difficulty of measuring small mass ratios astro-
metrically. Since the uncertainties extend towards or be-
yond zero1, the T08 solution places upper limits ∼ 10−4

1 While the 1-σ errors on the mass of Nix do not quite extend

Fig. 1.— The dynamical environment of P4 is plotted in the
space of semimajor axis, a, and eccentricity, e, relative to the Pluto-
Charon center of mass. The green dot (with errorbars) gives the
approximate location of P4. Vertical lines give nominal positions
of mean motion resonances. Red and blue dashed lines give the
nominal locations of the first order resonances with Hydra and Nix
respectively. The black dot-dashed line denotes the 5:1 resonance
with Charon (which nearly overlaps the 5:4 resonance with Nix).
Black diagonal lines show the Nix and Hydra crossing trajectories,
N-X and H-X, respectively. Magenta curves labelled CT plot the
critical Tisserand parameter relative to Nix and Hydra. The upper
and lower CT curves are for low and high masses of Nix and Hydra,
i.e. high and low albedos as labelled. See text for details.

on the mass ratios of Nix and Hydra. The equivalent
albedo constraint is A � 0.04. Our stability calculations
place much tighter constraints of A � 0.3 on Nix and
Hydra.

2.2. Orbit of P4

The orbit of P4 is only loosely constrained. The discov-
ery (S11) announces P4 as “consistent with” a circular,
coplanar orbit. Its mean motion from HST images span-
ning ∼ 20 days implies an orbital period of 32.1 ± 0.3
days, corresponding to a period ratio of 5.03± 0.05 with
Charon.
For a Keplerian orbit about the Pluto-Charon barycen-

ter (a good approximation at the 1% level), the measured
period corresponds to a mean separation of 57400± 400
km. Fig. 1 plots this orbit location as a dark green dot
with error bars. The lighter green error bars show the
larger range of orbits considered in our numerical simu-
lations.
The mean motion is consistent with the measured

projected radial separation of 59000 ± 2000 km from
Pluto (which is 2040 km from the barycenter). The pre-
discovery HST images that date back to 2006 (S11) as
well as future observations from HST, ALMA and New
Horizons will help constrain the orbit of P4.

2.3. Orbital Ephemerides

to zero mass, T08 discuss the difficulty of error estimation in their
high dimensionality fits.
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Figure 6. Similar to Figure 4, but varying the mass ratio of Nix to Hydra (0.3, 0.575, and 1.2 for left, center, and right panels) for four values of the combined Nix and
Hydra masses (with the same values and color scale as Figure 4.). The qualitative stability behavior is similar, including the decreased stability near 5:1 with Charon
for the two lowest total masses (cyan and yellow data). At large periods, stability times increase for higher mass ratios, i.e., relatively smaller Hydra masses.
(A color version of this figure is available in the online journal.)

5. The above mass and albedo constraints rely on extrapolation
of simulations with higher masses, as shown in Figure 5.
Direct simulations alone disfavor A ! 0.16 for which the
orbit crossing time of P4 is !107 yr.

Our mass limits based on the stability of P4 are a factor of
20 and 10 lower than the (1σ ) astrometric upper limits of T08.
The rendezvous of the New Horizons satellite with the Pluto
system in 2015 July as well as ongoing Hubble astrometry (Buie
et al. 2012) should greatly improve astrometric mass constraints.
Neglecting P4, Beauvalet et al. (2012) combine current data with
simulated New Horizons observations to show that mass errors
on Hydra will be reduced to ∼4 × 1016 kg. This limit is already
small enough to test our predictions. Hopefully, the inclusion of
P4 will further tighten astrometric mass constraints. Ultimately,
combining astrometry with long-term stability should provide
the tightest and most robust dynamical constraints.

Our results generally support the leading model for the origin
of the Pluto system: a giant impact that produces the PC binary
(McKinnon 1989; Canup 2005) and the debris that forms its
coplanar moons (Stern et al. 2006). The low eccentricity of
P4 requires collisional damping. The inferred high albedo of
Nix and Hydra is consistent with these being icy bodies. In the
model of Canup (2011), the collision of differentiated bodies (or
rock with icy mantles) forms Pluto and Charon plus a pure ice
debris disk from which the moons can accumulate. Collisional
stripping of an icy mantle similarly explains many properties
of the dwarf planet Haumea: rapid rotation, collisional family
members (Brown et al. 2007), and two high albedo icy moons
(Ragozzine & Brown 2009). A possible weakness of the
collisional scenario is that the debris disk forms much closer
to PC than Nix’s current orbit. Outward orbital migration has
been proposed, but issues regarding simultaneous migration of
multiple moons—which are likely more severe with P4—remain
unresolved (Ward & Canup 2006; Lithwick & Wu 2008a; Peale
et al. 2011).

The capture scenario for the system is implausible, especially
for the circular and coplanar minor moons. However, the
gravitational collapse scenario for the formation of lower
mass Kuiper Belt binaries might also apply to the PC system
(Nesvorný et al. 2010). This binary formation model is a natural
extension of a leading planetesimal formation theory: solid
debris accumulates via the streaming instability (Youdin &
Goodman 2005; Youdin & Johansen 2007) and subsequently
undergoes gravitational collapse (Youdin & Shu 2002; Johansen
et al. 2009). Rotational fission is the extra twist needed for
binaries. A particularly massive clump would be required for
the formation of Pluto and Charon. However massive clumps
form by merging in streaming instability simulations (Johansen
& Youdin 2007) and massive particle rings could form via
related secular gravitational instabilities (Youdin 2011a; Shariff
& Cuzzi 2011).

To explain Pluto’s outer moons, some of the collapsing
material must accumulate in a disk around the binary. Indeed, a
possible benefit of the scenario is that higher angular momentum
collapsing material could more readily produce distant moons.
While plausible, this specific scenario has not been modeled in
detail.

5.1. Pluto–Charon as Exoplanet Host Stars

As described in Section 3, the dynamics of the PC system are
broadly relevant to our understanding of circumbinary dynam-
ics. We conclude with a brief comparison to the circumbinary
planets discovered by Kepler, and emphasize that Pluto is a
guide to the circumbinary multi-planet systems that have yet to
be discovered.

To make an analogy with planetary systems, we may scale
the mass of Pluto to a solar mass. Charon then equates to
a 0.12 M# red dwarf. Nix, Hydra, and P4 would then have
scaled minimum masses of ∼2MMars, ∼3.5MMars, and ∼3M!,
respectively. Kepler 16, 34, and 35 contain planets with masses

8

Youdin, Kratter, & Kenyon, 2012
Credit: Alex Parker

Friday, July 27, 2012



Resonance destabilization

• 5:1 appears to be unstable for a range 
of parameters 

• Eccentricity of Pluto-Charon is a 
relatively weak effect

The Astrophysical Journal, 753:1 (11pp), 2012 ??? Youdin, Kratter, & Kenyon

Figure 6. Similar to Figure 4, but varying the mass ratio of Nix to Hydra (0.3, 0.575, and 1.2 for left, center, and right panels) for four values of the combined Nix and
Hydra masses (with the same values and color scale as Figure 4.). The qualitative stability behavior is similar, including the decreased stability near 5:1 with Charon
for the two lowest total masses (cyan and yellow data). At large periods, stability times increase for higher mass ratios, i.e., relatively smaller Hydra masses.
(A color version of this figure is available in the online journal.)

5. The above mass and albedo constraints rely on extrapolation
of simulations with higher masses, as shown in Figure 5.
Direct simulations alone disfavor A ! 0.16 for which the
orbit crossing time of P4 is !107 yr.

Our mass limits based on the stability of P4 are a factor of
20 and 10 lower than the (1σ ) astrometric upper limits of T08.
The rendezvous of the New Horizons satellite with the Pluto
system in 2015 July as well as ongoing Hubble astrometry (Buie
et al. 2012) should greatly improve astrometric mass constraints.
Neglecting P4, Beauvalet et al. (2012) combine current data with
simulated New Horizons observations to show that mass errors
on Hydra will be reduced to ∼4 × 1016 kg. This limit is already
small enough to test our predictions. Hopefully, the inclusion of
P4 will further tighten astrometric mass constraints. Ultimately,
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of the Pluto system: a giant impact that produces the PC binary
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(Ragozzine & Brown 2009). A possible weakness of the
collisional scenario is that the debris disk forms much closer
to PC than Nix’s current orbit. Outward orbital migration has
been proposed, but issues regarding simultaneous migration of
multiple moons—which are likely more severe with P4—remain
unresolved (Ward & Canup 2006; Lithwick & Wu 2008a; Peale
et al. 2011).

The capture scenario for the system is implausible, especially
for the circular and coplanar minor moons. However, the
gravitational collapse scenario for the formation of lower
mass Kuiper Belt binaries might also apply to the PC system
(Nesvorný et al. 2010). This binary formation model is a natural
extension of a leading planetesimal formation theory: solid
debris accumulates via the streaming instability (Youdin &
Goodman 2005; Youdin & Johansen 2007) and subsequently
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et al. 2009). Rotational fission is the extra twist needed for
binaries. A particularly massive clump would be required for
the formation of Pluto and Charon. However massive clumps
form by merging in streaming instability simulations (Johansen
& Youdin 2007) and massive particle rings could form via
related secular gravitational instabilities (Youdin 2011a; Shariff
& Cuzzi 2011).

To explain Pluto’s outer moons, some of the collapsing
material must accumulate in a disk around the binary. Indeed, a
possible benefit of the scenario is that higher angular momentum
collapsing material could more readily produce distant moons.
While plausible, this specific scenario has not been modeled in
detail.

5.1. Pluto–Charon as Exoplanet Host Stars

As described in Section 3, the dynamics of the PC system are
broadly relevant to our understanding of circumbinary dynam-
ics. We conclude with a brief comparison to the circumbinary
planets discovered by Kepler, and emphasize that Pluto is a
guide to the circumbinary multi-planet systems that have yet to
be discovered.
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Smith & Lissauer 2009, Kratter, Shannon, & Youdin in prep

Orbital stability of systems of closely-spaced planets 383

Fig. 1. log tc versus β for five 3.0035 × 10−6 M# (1 M⊕) planets on initially circular, coplanar orbits. The line is a least-squares fit to the data with 3.4 ! β ! 8.4. To obtain
this fit, the additional points for 6.4 < β < 6.8 were not included to avoid biasing the results. The boxed region is expanded in Fig. 12a.

low-β regime results from the planets being scattered during their
first close approach, and this occurs later for more closely spaced
planets as they have a longer synodic period. The lack of variability
in the results in this portion of the curve is a consequence of our
prescription of the initial particle longitudes. The second regime in
Fig. 1 is the portion of the data set falling within 3.4 ! β ! 8.4,
which is well modeled by an equation of the form

log
[
tc
to

]
= bβ + c, (6)

where b and c are constants, and to is the initial orbital period of
the innermost planet orbiting at 1 AU (i.e. to = 1 yr). The least-
squares fit to our data gives b = 1.012 and c = −1.686 with the
goodness of fit parameter ζ 2 = 0.0137.1 To obtain this fit, we used
only the dt = 0.005 years data point at a given β if multiple re-
sults were present at a single β . The form of Eq. (6) is consistent
with the results of Chambers et al. (1996), who studied systems
of 10−5 M# , 10−7 M# and 10−9 M# planets for times up to
107 years. One extension that our research makes to such exist-
ing studies is to increase the maximum virtual time investigated
by three orders of magnitude to 1010 years. This allows us to ob-
serve the third stability regime in Fig. 1, which occurs for β > 8.4.
In this regime, the stability time increases more sharply with in-
creases in β , quickly reaching 7× 109 and 9× 108 years at β = 8.7
and 8.8, respectively. Such an upturn in the stability time has been
seen by Duncan and Lissauer (1997, 1998) in studies of the inner
uranian satellites and giant planets around a reduced-mass Sun,
respectively.

1 Here, we define ζ 2 ≡ 1
N

∑
N [(O − E)/E]2 where O is the logarithm of the ob-

served crossing time, E is the logarithm of the expected crossing time based on the
least-squares fit to the data, and N is the number of data points included in the fit.
ζ 2 is dimensionless and provides a measure of the scatter of the data, with ζ 2 = 0
being a perfect fit to the data with no scatter, and ζ 2 > 0 indicating progressively
more scatter in the data.

3.1. Influence of planet number

In their study of the stability of multi-planet systems, Chambers
et al. (1996) investigated systems of 3, 5, 10, and 20 planets. They
found that increasing the number of planets beyond five had lit-
tle effect on the resulting stability time of the systems; however,
systems of three planets were considerably more stable than the
more populous systems. We chose to extend this investigation of
systems of three planets to longer integration times. We kept the
masses of the planets the same as for the results shown in Fig. 1,
3.0035×10−6 M# . Fig. 2 shows the logarithm of the crossing time,
tc , at which the first pair of orbits crossed with respect to the
initial orbital spacing parameter, β , for this system of three Earth-
mass planets alongside the previous results for the five-planet
system. For clarity, the additional points at 6.4 < β < 6.8 in the
five-planet system are not shown. A symplectic integrator with a
timestep of 0.005 years was used for the calculations. The points
shown with an upward-pointing arrow indicate lower limits for
which no orbit crossing has been detected. The point at β = 7.5
was stopped at 1010 years, but no orbit crossing had yet occurred.

The least-squares fit to the three-planet data gives b = 1.496
and c = −3.142 with ζ 2 = 0.0261. The three-planet system is more
stable than the five-planet system for every value of β tested.
The three-planet case shows considerably more dispersion than the
five-planet case, particularly at larger β . In addition, the transition
from a flat to linear relationship between the stability time (log tc)
and initial orbital spacing occurs at smaller β (near β = 3.0) than
in the five-planet case.

3.2. Influence of planet mass

Chambers et al. (1996) found that, for a system of three plan-
ets, decreasing the mass from 10−5 M# to 10−9 M# significantly
reduced the stability time of the system for comparable values of
β (albeit not by as much as it increased stability times for sepa-
rations measured in unscaled distance). We chose to use the five-
planet system as our primary comparison, so we investigated the
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Dynamics of Stellar Death

• Slow adiabatic mass loss 
conserves eccentricity, but semi-
major axis grows

• Change relative spacings in multi-
planet systems

• Non-constant mass loss can excite 
eccentricity and lead to planetary 
loss

• Engulfment

2118 D. Veras et al.

Figure 15. Eccentricity excitation of planets which remain bound during massive star evolution, for 2–8 M!. The left- and right-hand panels are for low
metallicity and solar metallicity, respectively. The top, middle and bottom panels are for e0 = 0.01, 0.5 and e = 0.9, respectively. Each data point is averaged
over the 50 values of the mean anomaly sampled for the given µ0, a0 and e0 values. If no symbol is displayed, then none of the corresponding systems was
stable. The horizontal lines indicate values of 1 − e0; symbols above this line experience a net eccentricity decrease.

(i) Fesen et al. (2007) report Hubble Space Telescope observa-
tions that indicate that the 120 yr average expansion velocity of
SN 1885 is 1.24 × 104 ± 1.4 × 103 km s−1.

(ii) Mazzali et al. (2010) model spectra of SN 2007gr, and find
that the inner 1 M! of material is being ejected at a velocity of
4.5 × 103 km s−1.

(iii) Szalai et al. (2011) find that the maximum velocity of su-
pernova ejecta of 2004dj during the nebular phase is approximately
3.25 × 103 km s−1.

One theoretical investigation claims that ejecta velocity can reach
2 × 104 to 3 × 104 km s−1 (Woosley, Langer & Weaver 1993), and
another demonstrates that (surface) piston speeds of 1 × 104–2 ×
104 km s−1 ‘covers the extremes from a sudden (energy deposition
over 1 s) to a slow-developing explosion (energy deposition over
∼100 ms)’ (Dessart, Livne & Waldman 2010). As exemplified by
these examples as well as the compilation in fig. 1 of Hamuy &
Pinto (2002), a typical range is v = 103–104 km s−1; let us then
assume the lower bound v = 103 km s−1.

C© 2011 The Authors, MNRAS 417, 2104–2123
Monthly Notices of the Royal Astronomical Society C© 2011 RAS

Veras et al 2011

As mass increases, the presence of strong resonances
becomes more important. This is a result of our choice of
equal separations and equal masses; many of these resonan-
ces would disappear with small variations in mass, eccen-
tricity, and inclination (Chambers et al. 1996), aspects that
will be tested with further study. The presence of resonances

is most easily seen in Figure 6, where l ¼ 10"3. In the range
of ! ¼ 4:4 5:2, the points greatly depart from the predicted
curve. The spike at ! ¼ 5:2 corresponds to the first and sec-
ond, as well as the second and third, planets being in 2 : 1
resonances. This particular example shows that the basic
dynamics of a system undergoing adiabatic mass evolution
favors stability near strong resonances. Such a process
potentially could augment current ideas about how reso-
nant extrasolar planets, such as those around GJ 876,
formed (Snellgrove, Papaloizou, & Nelson 2001; Armitage
et al. 2001; Murray, Paskowitz, & Holman 2001; Rivera &
Lissauer 2000).

4.3. Observational Implications

These simulations have several observational implica-
tions, which can be broadly separated into two categories:
the character and the signature of planetary systems around
white dwarfs.

Surviving planets that are marginally stable will suffer
close approaches soon after the star evolves into a white

Fig. 5.—Same as Fig. 4, but for the l ¼ 10"5 case. The slope and inter-
cept of the top line were derived by fitting the numerical simulations with-
out mass loss. The slope of the bottom line is the predicted change due to
mass loss.

Fig. 6.—Same as Fig. 4, but for the l ¼ 10"3 case. Arrows indicate sepa-
rations at which our simulations remained stable for 107 orbits. The slope
and intercept of the top line were derived by fitting the numerical simula-
tions without mass loss. The presence of strong resonances is particularly
noticeable as enhanced stability around ! = 5.2 for the mass-loss case,
which corresponds to the 2 : 1 resonance.

Fig. 4.—Comparison of the timescale to the first close approach for a
system of three l ¼ 10"7 planets with and without mass loss. Asterisks rep-
resent static masses, and diamonds represent the presence of mass loss. The
top line is given by least-squares fitting a line of slope b and intercept c for
nomass loss. The bottom line is given by eq. (5).

TABLE 1

Coefficients for Equation (2)

l b c b0 c0

10"7 ....... 1.16# 0.04 "1.6# 0.2 0.87# 0.05 "1.4# 0.3
10"5 ....... 1.46# 0.12 "2.4# 0.6 1.14# 0.05 "2.5# 0.3
10"3 ....... 2.5# 0.5 "6# 2 1.2# 0.5 "3# 2

Notes.—Coefficients are derived through numerical simulations of
three planets in circular orbits undergoing both mass loss (primed coeffi-
cients) and no mass loss (unprimed coefficients). Errors quoted are 1 ".
The l ¼ 10"7 case can be compared with the results from Chambers et al.
1996, who determined that b = 1.176 # 0.051 and c = "1.663 # 0.274.
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more than the binary 
companion

Kratter & Perets, 2012 
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In the rotating reference frame...(CR3BP)
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Capture Mechanism
• Zero velocity curves show the bounds of an object’s orbit for fixed Jacobi constant

• Mass loss opens and 
closes the bottleneck 
(at L1) through which 
destabilized planets 
travel

• Long term (>100Myr) 
stability not 
guaranteed 

Heppenheimer & Porco 1977 Vieira 
Neto et al 2006Kratter & Perets 2012
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Conclusions

1) Provide an overview of role of dynamics in formation and evolution of the systems 
you will observe

• Dynamics controls the birth, evolution, and death of planetary systems

2) Provide basic tools to help analyze and validate new systems

• Kepler light curves are fantastic. Dynamical modeling makes it even more powerful 

•  Light Curves + Dynamics sheds light on physics, formation, and fate

•  Simple estimate can help (in)validate detections

2) Keep theory in mind in choosing project and writing papers
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