Combining Imaging + RV's

Justin R. Crepp

Frank M. Freimann Professor Department of Physics University of Notre Dame jcrepp@nd.edu

Connecting Two Distinct Techniques

Motivation

- High detection efficiency.
- Break sin(i) degeneracy, construct 3d-orbits.
- Dynamical masses of companions.
- Calibrate evolutionary models.
- Determine f_{pl} for wide orbits.

Partial Orbits

lsaac Newton

What information can be gleaned?

 Minimum dynamical mass (Torres 1999).
 Physical separation (Howard et al. 2010).

$$\operatorname{Minimum}_{Sun} \operatorname{Mass}_{Sun} = 1.39 \mathrm{E} - 5 \left(\frac{d}{\mathrm{pc}} \frac{\rho}{\mathrm{arcsec}} \right)^2 \left| \frac{d(RV)}{dt} \right|$$

where RV acceleration is measured in m s⁻¹ yr⁻¹.

Physical Separation

$$\left|\frac{d(RV)}{dt}\right| = \frac{GM_B}{r_{AB}^2}\cos\theta, \qquad \left(\frac{r_{AB}}{AU}\right)\sin\theta = \frac{\rho}{\pi}$$

where r_{AB} is the instantaneous true physical separation.

At What Point Can We Calculate the Orbit?

 $p^2 = \frac{4\pi^2 a^3}{G\left(M+m\right)}$

Notice that precise parallax is essential (Dupuy & Kraus 2013)

When do constraints become interesting?

How Do We Fit Observations?

- Bayesian statistical framework.
 ("Data Analysis: A Bayesian Tutorial" by Sivia)
- Assume we understand uncertainties.
- Keplerian orbit model. Single companion.
- Markov-Chain Monte Carlo (MCMC) analysis.
 ("Quantifying the Uncertainty in the Orbits of Extrasolar Planets", Ford 2005, AJ, 129, 1706)

Markov Chain Monte Carlo

- Many degrees of freedom {*P, e, i,* ω , t_p , Ω , ...}.
- Metropolis-Hastings algorithm.

Metropolis-Hastings Pseudo-Code:

```
(1) Cull P, a, e, i, \omega, t<sub>p</sub>, \Omega, + nuissance parameters.
(2) Calculate Likelihood, L, for parameters.
    Use both RV, Imaging data simultaneously.
(3) if (L > L_0)
        record new chain entries.
    else
        if (rand[0,1] < L / L_0)
             record new chain entries.
        else
             record old chain entries.
        end
    end
(4) Wash, Rinse, Repeat to determine posterior.
```


Direct Image, Keck/NIRC2 2011

3d-Orbit and Dynamical Mass			
HR7672B	weighted mean	68.2% CI	
mass (M_J)	69.5	66.5 - 71.8	
P (yr)	73.3	70.4 - 75.5	
a (AU)	18.4	17.9 - 18.8	
<i>e</i>	0.50	0.49 – 0.51	
$i \; (deg) \; \ldots$	97.3	96.8 - 97.7	
ω (deg)	259	257 - 261	
Ω (deg)	61.0	60.6 - 61.3	
t_p (year)	2014.6	2014.5 - 2014.7	
Crepp et al. 2012a, Ap	J J <i>theoretical ev</i>	More accurate and precise than theoretical evolutionary models(!)	

RV+Imaging: The Best of Both Worlds

[K1, HIRES] precision RVs long time baselines [K2, NIRC2] adaptive optics coronagraphy speckle suppression

HD 114174

B 1"

Matthews et al. 2014, ApJL

ΔL=10.15 +/- 0.15 [deepest MIR highcontrast image]

LBTI AO, L-band May 24, 2013

The Frequency of Giant Planets around M-dwarfs

Summary

- Combined RV+Imaging is more powerful than sum of individual parts.
- TRENDS high-contrast survey:
 - HD 114174 B [WD age discrepancy]
 - HD 19467 B [benchmark T-dwarf]
- *Non*-detections are Important:
 - (i) M-dwarfs have few gas giant planets
 (6.5%+/-3.0%) from 0-20 AU for 1-13M_{Jup}.
 - (ii) Planet-metallicity correlation holds at wide orbit separations.
 - (iii) First independent check of microlensing results for wide-separation planets.