High-Contrast Instruments (Theory)

N. Jeremy Kasdin

Princeton University

Imaging a Star-A Simple Ray Optics Description

Imaging a Star-A Simple Ray Optics Description

Star and Planet

However, we need to include diffraction

$$
\begin{gathered}
E_{0}(x, y)=\frac{1}{j \lambda} \iint_{\Sigma} E_{1}(\xi, \eta) \frac{\exp \left(j k r_{01}\right)}{r_{01}} \cos \theta d \xi d \eta \\
r_{01}=\sqrt{z^{2}+(x-\xi)^{2}+(y-\eta)^{2}}
\end{gathered}
$$

The Huygens-Fresnel Principle

See Goodman, Introduction to Fourier Optics

However, we need to include diffraction

$$
\begin{gathered}
E_{0}(x, y)=\frac{1}{j \lambda} \iint_{\Sigma} E_{1}(\xi, \eta) \frac{\exp \left(j k r_{01}\right)}{r_{01}} \cos \theta d \xi d \eta \\
r_{01}=\sqrt{z^{2}+(x-\xi)^{2}+(y-\eta)^{2}}
\end{gathered}
$$

The Huygens-Fresnel Principle
This is too complicated so we approximate in different regimes.

Important approximations . . .

S-Huygens (very near field)

$$
\begin{aligned}
E(x, y) & =\frac{e^{j k S}}{j \lambda z} \iint_{-\infty}^{\infty} E(\xi, \eta) e^{j \frac{k}{2 S}\left[(x-\xi)^{2}+(y-\eta)^{2}\right]} d \xi d \eta \\
S & =\sqrt{z^{2}+x^{2}+y^{2}}
\end{aligned}
$$

Fresnel Number

$$
\frac{R^{2}}{\lambda S} \sim \mathcal{O}(1)
$$

Fresnel (near field)

$$
E(x, y)=\frac{e^{j k z}}{j \lambda z} \iint_{-\infty}^{\infty} E(\xi, \eta) e^{j \frac{k}{2 z}\left[(x-\xi)^{2}+(y-\eta)^{2}\right]} d \xi d \eta \quad \frac{R^{2}}{\lambda z} \sim \mathcal{O}(1) \quad x, y \ll z
$$

Fraunhoffer (far field)

$$
E(x, y)=\frac{e^{j k z} e^{j \frac{k}{2 z}\left(x^{2}+y^{2}\right)}}{j \lambda z} \iint_{-\infty}^{\infty} E(\xi, \eta) e^{-j \frac{2 \pi}{\lambda z}(x \xi+y \eta)} d \xi d \eta \quad \frac{R^{2}}{\lambda z} \ll 1
$$

Fourier Transform

Important approximations . . .

S-Huygens (very near field)

$$
\begin{aligned}
E(x, y) & =\frac{e^{j k S}}{j \lambda z} \iint_{-\infty}^{\infty} E(\xi, \eta) e^{j \frac{k}{2 S}\left[(x-\xi)^{2}+(y-\eta)^{2}\right]} d \xi d \eta \\
S & =\sqrt{z^{2}+x^{2}+y^{2}}
\end{aligned}
$$

Fresnel Number

$$
\frac{R^{2}}{\lambda S} \sim \mathcal{O}(1)
$$

Fresnel (near field)

$$
E(x, y)=\frac{e^{j k z}}{j \lambda z} \iint_{-\infty}^{\infty} E(\xi, \eta) e^{j \frac{k}{2 z}\left[(x-\xi)^{2}+(y-\eta)^{2}\right]} d \xi d \eta \quad \frac{R^{2}}{\lambda z} \sim \mathcal{O}(1) \quad x, y \ll z
$$

Fraunhoffer (far field)

$$
E(x, y)=\frac{e^{j k z} e^{j \frac{k}{2 z}\left(x^{2}+y^{2}\right)}}{j \lambda z} \iint_{-\infty}^{\infty} E(\xi, \eta) e^{-j \frac{2 \pi}{\lambda z}(x \xi+y \eta)} d \xi d \eta \quad \frac{R^{2}}{\lambda z} \ll 1
$$

Fourier Transform

Star \& Planet with Diffraction

Star \& Planet with Diffraction

Star \& Planet with Diffraction

Circular
Aperture

Resolution

Two Meter Telescope

Ten Meter Telescope

Even a two-meter telescope can resolve a planet at 1 AU about closest stars.

The Problem is Contrast

High-Contrast Imaging

To image the planet with a ground or space telescope there are five important metrics:

- Contrast: The ratio of the peak of the stellar point spread function to the halo at the planet location.
- Inner Working Angle: The smallest angle on the sky at which the needed contrast is achieved and the planet is reduced by no more than 50\% relative to other angles.
- Throughput: The ratio of the open telescope area remaining after high-contrast is achieved.
- Bandwidth: The wavelengths at which high contrast is achieved.
- Sensitivity: The degree to which contrast is degraded in the presence of aberations.

High-Contrast Imaging

To image the planet with a ground or space telescope there are five important metrics:

- Contrast: The ratio of the peak of the stellar point spread function to the halo at the planet location.
- Inner Working Angle: The smallest angle on the sky at which the needed contrast is achieved and the planet is reduced by no more than 50% relative to other angles.
- Throughput: The ratio of the fraction of light in the central core of the PSF to the same fraction in an Airy function.
- Bandwidth: The wavelengths at which high contrast is achieved.
- Sensitivity: The degree to which contrast is degraded in the presence of aberations.

In the remainder of this talk I will describe how we achieve highcontrast using a coronagraph.

Later, Aki Roberge will describe how it is done using a Starshade.

Tomorrow, Laurent Pueyo will describe how the planet is extracted from the image.

Coronagraphy

Modify the optical path of the telescope to reduce the stellar halo in the planet "discovery zone" (increase contrast) while allowing sufficient planet light to transmit through.

The "Lyot Coronagraph"

The "Lyot Coronagraph"

Bandlimited Lyot

Classical Lyot (Gaussian)

Bandlimited Lyot

a)

Aperture

A(u)
b)

Conjugate of Mask ATF
$\mathrm{M}(\mathrm{u})$
c) $\left.\begin{array}{r}0.5 \\ 0.0 \\ -0.5\end{array}\right)$

The Second Pupil Field $\mathrm{M}(\mathrm{u})$ * $\mathrm{A}(\mathrm{u})$
d)

e)

The Final Field $\mathrm{L}(\mathrm{u})(\mathrm{M}(\mathrm{u}) * \mathrm{~A}(\mathrm{u}))$

Kuchner \& Traub (2002)

Bandlimited Lyot

Classical Lyot (Gaussian)
a)

Aperture A(u)
b)

Conjugate of Mask ATF
M(u)
c)

The Second Pupil Field $\mathrm{M}(\mathrm{u})$ * $\mathrm{A}(\mathrm{u})$
d)

e)
 $\mathrm{L}(\mathrm{u})(\mathrm{M}(\mathrm{u}) * \mathrm{~A}(\mathrm{u}))$

Bandlimited Lyot

a)

Aperture
A(u)
b)

Conjugate of Mask ATF M(u)
c)

The Second Pupil Field $\mathrm{M}(\mathrm{u}) * \mathrm{~A}(\mathrm{u})$
d)

e)

The Final Field $\mathrm{L}(\mathrm{u})(\mathrm{M}(\mathrm{u}) * \mathrm{~A}(\mathrm{u}))$

Kuchner \& Traub (2002)

A sin^4 mask.

Throughput reduced by image plane mask \& Lyot stop.
a) Ma\&k

c) Pupil

b) Conjugate of Mask Function

d) Lyot Stop

A General Picture

Coronagraph is a linear operator

$E_{i} \mathcal{A}(x) \mathcal{C}\left\{E_{i}\right\} \mathcal{A}_{c}(x)=A_{c}(x) e^{i \psi(x)}$

$$
P_{c}(\omega)=\left|\mathcal{F}\left\{A_{c}(x) e^{i \psi(x)}\right\}\right|^{2}
$$

On-Axis Point Spread Function metric: contrast, bandwidth

A General Picture

Coronagraph is a linear operator

$$
E_{i} \mathcal{A}(x) \mathcal{C}\left\{E_{i}\right\} \mathcal{A}_{c}(x)=A_{c}(x) e^{i \psi(x)}
$$

$$
P_{c}(\omega)=\left|\mathcal{F}\left\{A_{c}(x) e^{i \psi(x)}\right\}\right|^{2}
$$

On-Axis Point Spread Function metric: contrast, bandwidth

$$
P_{o}(\omega)=\left|\mathcal{F}\left\{\mathcal{A}_{o}\right\}\right|^{2}
$$

Off-Axis Point Spread Function
$E_{i} \mathcal{A}(x) \mathcal{C}\left\{E_{i}\right\} \quad \mathcal{A}_{o}(x)$ metrics: iwa, throughput, sharpness

A General Picture

Coronagraph is a linear operator

$$
E_{i} \mathcal{A}(x) \mathcal{C}\left\{E_{i}\right\} \mathcal{A}_{c}(x)=A_{c}(x) e^{i \psi(x)}
$$

$$
P_{c}(\omega)=\left|\mathcal{F}\left\{A_{c}(x) e^{i \psi(x)}\right\}\right|^{2}
$$

On-Axis Point Spread Function metric: contrast, bandwidth

$$
P_{o}(\omega)=\left|\mathcal{F}\left\{\mathcal{A}_{o}\right\}\right|^{2}
$$

Off-Axis Point Spread Function
$E_{i} \mathcal{A}(x) \mathcal{C}\left\{E_{i}\right\} \quad \mathcal{A}_{o}(x)$ metrics: iwa, throughput, sharpness

Instrument Contrast (on-axis behavior)

$E_{i} \mathcal{A}(x) \mathcal{C}\left\{E_{i}\right\} \mathcal{A}_{c}(x)=A_{c}(x) e^{i \psi(x)}$

$$
P_{c}(\omega)=\left|\mathcal{F}\left\{A_{c}(x) e^{i \psi(x)}\right\}\right|^{2}
$$

On-Axis Point Spread Function

The Instrument Contrast Ratio (at a specific wavelength)

$$
C_{i}=\frac{\int_{\Delta \Omega} P_{c}(\omega) d \omega}{\Delta \Omega P_{o}(0)}=\frac{\int_{S}\left|\mathcal{A}_{c}(x)\right|^{2} d x}{\Delta \Omega A_{o}^{2}}\left[1-\frac{\int_{\Delta C} P_{c}(\omega) d \omega}{\int_{-\infty}^{\infty} P_{c}(\omega) d \omega}\right]
$$

Instrument Contrast (on-axis behavior)

$E_{i} \mathcal{A}(x) \mathcal{C}\left\{E_{i}\right\} \mathcal{A}_{c}(x)=A_{c}(x) e^{i \psi(x)}$

$$
P_{c}(\omega)=\left|\mathcal{F}\left\{A_{c}(x) e^{i \psi(x)}\right\}\right|^{2}
$$

On-Axis Point Spread Function

The Instrument Contrast Ratio (at a specific wavelength)

$$
C_{i}=\frac{\int_{\Delta \Omega} P_{c}(\omega) d \omega}{\Delta \Omega P_{o}(0)}=\frac{\int_{S}\left|\mathcal{A}_{c}(x)\right|^{2} d x}{\Delta \Omega A_{o}^{2}}\left[1-\frac{\int_{\Delta C} P_{c}(\omega) d \omega}{\int_{-\infty}^{\infty} P_{c}(\omega) d \omega}\right]
$$

Reduce the exit amplitude

Instrument Contrast (on-axis behavior)

$E_{i} \mathcal{A}(x) \mathcal{C}\left\{E_{i}\right\} \mathcal{A}_{c}(x)=A_{c}(x) e^{i \psi(x)}$

$$
P_{c}(\omega)=\left|\mathcal{F}\left\{A_{c}(x) e^{i \psi(x)}\right\}\right|^{2}
$$

On-Axis Point Spread Function

The Instrument Contrast Ratio (at a specific wavelength)

$$
\begin{gathered}
C_{i}=\frac{\int_{\Delta \Omega} P_{c}(\omega) d \omega}{\Delta \Omega P_{o}(0)}=\frac{\int_{S}\left|\mathcal{A}_{c}(x)\right|^{2} d x}{\Delta \Omega A_{o}^{2}}\left[1-\frac{\int_{\Delta C} P_{c}(\omega) d \omega}{\int_{-\infty}^{\infty} P_{c}(\omega) d \omega}\right] \\
\text { Reduce the exit amplitude }
\end{gathered} \begin{aligned}
& \text { Shift the energy } \\
& \text { (uncertainty principal) }
\end{aligned}
$$

Coronagraph Families

- Lyot \& Bandlimited Lyot (Gemini, Keck, Hubble, Subaru, Palomar, VLT, JWST NICI, AFTA)
- 4 Quadrant Phase Mask (JWST MIRI, VLT, LBT)
- Optical Vortex (Palomar, VLT, LBT)
- AIC, VNC and other nullers
- Apodized pupils (VLT)
- Shaped pupils (SPICA, Subaru, AFTA)
- Pupil remappers (PIAA) (Subaru)
- Apodized phase plate (MMT, Magellan, VLT)

APLC
(GPI,
VLT/SPHERE,
Palomar)

Coronagraphs That Change Amplitude

Focal Plane Amplitude Mask: Lyot \& Bandlimited Lyot, AIC

Focal Plane Phase Mask: 4QPM, Vector Vortex

Four-Quadrant Phase Mask coronagraph (Rouan) (4QPM)

Pupil plane Image plane w/ mask Pupil plane Vector vortex coronagraph (Mawet)

Coronagraphs That Reshape PSF

Pupil Plane Amplitude Mask: Shaped Pupils, PIAA

Pupil Plane Phase Mask: APP

Pupil Apodization to Reshape PSF

Slepian, D., "Analytic Solution of Two Apodization Problems",
September, 1965

Pupil Apodization

Point Spread Function

The "optimal" apodization that maximally concentrates light is the Prolate Spheroidal Wavefunction, based on finite uncertainty principle.

Pupil Apodization to Reshape PSF

Shaped pupil contrast independent of wavelength.

Pupil Apodization to Reshape PSF

Shaped pupil contrast independent of wavelength.

Pupil Apodization to Reshape PSF

Shaped pupil contrast independent of wavelength.

Shaped Pupil Zoo (1D)

Shaped pupils: $A(x, y)$ is zeroone valued (holes in masks)

- Advantages:
- simple to manufacture
- inherently broadband
- minimally sensitive to aberrations
- no off-axis degradation of PSF
- Disadvantages:

- throughput (though roughly the same as $8^{\text {th }}$ order Lyot coronagraph)
- IWA (better IWA can be achieved through less discovery space or greater simplicity)

Pupils designed via optimization under certain constraints

Direct 2 D Optimization of SPs

$\frac{\text { JWST }}{45 \% ~ T h r o u g h p u t ~}$
5 to 15 lambda/D
10^{-5} Contrast

First Lab Test of 2D SP at Princeton

A. Carlotti, E. Young, G. Che

Manufacturing 2D-Optimized Shaped Pupils

- Recent breakthrough: Reflective SPs (RSPs)
- Silicon wafers with absorptive (black silicon) and reflective regions

- Testing $1^{\text {st }}$ black Si masks now in HCIL.

Shaped Pupil Coronagraph for WFIRST-AFTA

Riggs et al. (2014)

Telescope Pupil

Shaped Pupil "Characterization" Mask

First Focal Plane Bowtie Mask

Intensity in First Focal Plane

Contrast in Final Image (10^{-8})

Pupil Mapping (PIAA)

Pupil Mapping for Apodization

Nearly 100\% throughput 100\% search area small (<2 lambda/ d) Inner Working Angle

Guyon (2003), Vanderbei \& Traub $(2003,2005)$

Apodizing Phase Plates (Codona, Kenworthy)

One sided discovery zone

2 sided: with 0/ד masks (Carlotti) ... or with quarter wave plates

\& Wollaston prism (Snik)

How is Phase used to Change Amplitude?

Coronagraphs That Combine Both

Combine apodized pupil with focal plane mask and Lyot stop: APLC, SPLC, ACAD

Apodized Pupil Lyot Coronagraph

Soummer et al. 2005, 2009, 2011

GPI design: contrast > 1e7 at $5 \lambda / \mathrm{D}$ with central obstruction and 20\% bandpass

Apodized Pupil Lyot Coronagraph

- Generalized prolate spheroidal apodizers exist for any aperture geometry and focal mask diameter
- Quasi-Achromatic Solutions exist for large enough mask (e.g. with GPI with 5.6 lambda/D mask diameter)

Soummer et al. 2011

Shaped Pupil Lyot Coronagraph

Simultaneously optimize pupil and Lyot plane

Gains smaller iwa and more throughput
from Neil Zimmerman

Band-ave yOt StOP

Phase mask coronagraphs with on-axis telescopes (Carlotti, Mawet, Pueyo) ; here w/ 4QPM ; ask D.Mawet for Vortex. obscuration \& spiders limit high-contrast ; apodizer can retrieve it

Shaped Pupil Lyot Coronagraph for WFIRST-AFTA

From Neil Zimmerman, Princeton

Shaped Pupil
"Characterization" Mask

First Focal Plane
Bowtie Mask

Lyot Stop 90\% undersized

Intensity in First Focal Plane

Intensity in Lyot Plane

Contrast in Final Image (10-8)

Instrument Performance (off-axis behavior)

$E_{i} \mathcal{A}(x) \mathcal{C}\left\{E_{i}\right\} \quad \mathcal{A}_{o}(x)$

Detection Time (Kasdin et al. 2006)

$$
\begin{aligned}
& t_{d}=\frac{1}{\beta} \frac{\left(K-\gamma \sqrt{1+\frac{\tilde{Q} \Xi_{\Delta S}}{\Psi_{\Delta S}}}\right)^{2}}{T_{R} \tilde{Q} \Psi_{\Delta S}} \\
& \beta=\epsilon \eta^{2} \Delta \lambda I_{p} A\left(T_{A}\right)_{a i r y}
\end{aligned}
$$

Off-Axis Point Spread Function

$$
P_{o}(\omega)=\left|\mathcal{F}\left\{\mathcal{A}_{o}\right\}\right|^{2}
$$

Metrics

- Throughput (and iwa)
- Sharpness
- $\tilde{Q}=Q \sum_{\Delta S} \bar{P}_{i j}$

Q is the ratio of the planet flux at the center of the PSF to the background flux there.

$$
Q=\frac{C}{C_{i}+C_{e q}}
$$

Instrument Performance (off-axis behavior)

$$
P_{o}(\omega)=\left|\mathcal{F}\left\{\mathcal{A}_{o}\right\}\right|^{2}
$$

Off-Axis Point Spread Function
$E_{i} \mathcal{A}(x) \mathcal{C}\left\{E_{i}\right\} \quad \mathcal{A}_{0}(x)$

Detection Time (Kasdin et al. 2006)

$$
t_{s}=\frac{(S N R)^{2}\left(\Xi \tilde{Q}+\Psi_{\Delta S}\right)}{\beta Q \Psi_{\Delta S}}
$$

$$
\beta=\epsilon \eta^{2} \Delta \lambda I_{p} A\left(T_{A}\right)_{\text {airy }}
$$

Metrics

- Throughput (and iwa)
- Sharpness
- $\tilde{Q}=Q \sum_{\Delta S} \bar{P}_{i j}$

Q is the ratio of the planet flux at the center of the PSF to the background flux there.

$$
Q=\frac{C}{C_{i}+C_{e q}}
$$

Throughput

There are four possible measures of throughput often quoted:
Total Throughput:

$$
T=\frac{\iint_{-\infty}^{\infty} P_{o}(u, v) d u d v}{\iint_{-\infty}^{\infty} P(u, v) d u d v}=\frac{\iint_{-\infty}^{\infty}\left|\mathcal{A}_{o}(x, y)\right|^{2} d x d y}{\iint_{-\infty}^{\infty}|\mathcal{A}(x, y)|^{2} d x d y}=\frac{\tilde{A}_{o}}{A} \quad \text { For binary pupils }=\frac{A_{o}}{A}
$$

Airy Throughput:

$$
T_{A}=T \frac{\iint_{\Delta S} P_{o}(u, v) d u d v}{\iint_{-\infty}^{\infty} P_{o}(u, v) d u d v}=\frac{\iint_{\Delta S} P_{o}(u, v) d u d v}{\iint_{-\infty}^{\infty} P(u, v) d u d v}=\frac{\iint_{\Delta S} P_{o}(u, v) d u d v}{A}
$$

Useful Throughput (Guyon, et al. 2006):

Maximum fraction of planet light that can be separated from starlight.
Effective Throughput:

$$
T_{R}=\frac{\iint_{\Delta S} P_{o}(u, v) d u d v}{\iint_{\Delta S} P(u, v) d u d v}=\frac{T_{A}}{\left(T_{A}\right)_{a i r y}}
$$

Note: P_{0} is a function of angle in image plane.

Inner Working Angle

Where the effective throughput drops by 50%
(Maybe where t_{d} doubles to allow for sharpness change?)

Perfect Coronagraph

$$
T_{\Omega} \leq 1-A^{2}(\theta)
$$

A = Airy Function

Guyon, Pluzhnik, Kuchner, Collins \& Ridgway 2006, ApJS 167, 81

Sharpness

$$
\Psi_{\Delta S}=\frac{\sum_{i j} \bar{P}_{i j}^{2}}{\left(\sum_{i j} \bar{P}_{i j}\right)^{2}}
$$

Note that sharpness is a strong function of the PSF sampling.

Critically sampled Sharpness

- Airy $=0.12$
- Prolate = 0.08
-Lyot $=0.06$

Wavefront Aberrations

Atmospheric distortions and imperfect optics degrade contrast

Aberrations significantly degrade contrast: $10^{10} \sim 10^{5}$

Wavefront Aberrations

Atmospheric distortions and imperfect optics degrade contrast

Aberrations significantly degrade contrast: $10^{10} \sim 10^{5}$

Wavefront Aberrations

Atmospheric distortions and imperfect optics degrade contrast

Aberrations significantly degrade contrast: $10^{10} \sim 10^{5}$

Typical Ground Adaptive Optics Phase Conjugation

Typical Ground Adaptive Optics
 Phase Conjugation

Star Image

Images and Video from UC Santa Cruz Adaptive Optics course.

Typical Ground Adaptive Optics
 Phase Conjugation

Without
Adaptive Optics

Planet imaging requires "Extreme Adaptive Optics" with Shigh format DMs to correct mid-spatial frequencies.

Deformable Mirrors

Xinetics Electrorestrictive

MEMS Deformable Mirror (BMC)

Continuous facesheet
FOV determined by number of actuators
Model surface as linear sum of basis functions Usually influence function as basis function

Measured response from a single poked actuator Approximately Gaussian shape

Direct Images of HR8799 with AO

Marois, Macintosh, et al. (2008)

Gemini/NICI (Lyot)

The planets were later "discovered" in older HST images without AO.
ε_{b}

Keck

Next Generation of Extreme AO on ground

 GPI, SPHERE, SCExAO+CHARISCourtesy Bruce Macintosh

Gemini Planet Imager
APLC coronagraph with 4000 actuator MEMS DM.

Next Generation of Extreme AO on ground GPI, SPHERE, SCExAO+CHARIS
 Courtesy Bruce Macintosh

Beyond Extreme AO

On ground, aberrations are predominantly phase.
For very high contrast in space, need to worry about noncommon path error and amplitude errors. Limit contrast to $1 \mathrm{e}-5$ to $1 \mathrm{e}-7$.

Solution: Focal Plane Wavefront Sensing and Control with two Deformable Mirrors

Beyond Extreme AO

On ground, aberrations are predominantly phase.
For very high contrast in space, need to worry about noncommon path error and amplitude errors. Limit contrast to $1 \mathrm{e}-5$ to $1 \mathrm{e}-7$.

Solution: Focal Plane Wavefront Sensing and Control with two Deformable Mirrors

Today, "coronagraph" refers to both the optical design and the wavefront control system!

Focal Plane Wavefront Sensing \& Control

Need to estimate complex field from only intensity

Control Algorithms:
Speckle Nulling (Brown \& Burrows) Energy Minimization (Malbet \& Shao) Electric Field Conjugation (Giveon) Stroke Minimization (Pueyo)

Estimation Algorithms: DM Diversity (Borde \& Traub, Belikov)
Gerchberg-Saxton (Kay)
Kalman Filtering (Groff)

Single DM Control

Because controlling amplitude, only single-sided dark hole.

Shaped Pupil

- 4-10 λ / D
- 10% bandpass
- 2.4×10^{-9} contrast [Belikov et al. 2007]

Band-Limited Lyot

- 4-10 λ / D
- 10% bandpass
- 6.4×10^{-10} contrast
[Moody et al. 2008]

PIAA

- 2-3.4 λ / D
- monochromatic
- 1.9×10^{-8} contrast [Belikov et al. 2011]

Because using phase to amplitude conversion, controller is chromatic and bandwidths limited. OWA determined by \# of actuators.

Dual DM Control

First test at JPL HCIT in August, 2013 (monochromatic).

$$
\begin{aligned}
& \mathrm{IWA}=5 \lambda / \mathrm{D} \\
& \mathrm{OWA}=9 \lambda / \mathrm{D} \\
& 3.6 \times 10^{-9} \text { contrast }
\end{aligned}
$$

Future?

Hybridizing coronagraph with DMs to generate contrast

DM Setting

Shaped Pupil

One-Sided Dark Hole

- Contrast: 5×10^{-9}
- Transmission: 61\%
- Stroke: 0.91 Vambda
- IWA: 4 Vambda/D
- OWA: 22 Vlambda/D

Hybrid Lyot Coronagraph

Baseline design for WFIRST/AFTA

From John Trauger, JPL

References

1. Riggs, A.J.E., Zimmerman, N., Carlotti, A., Kasdin, N.J., Vanderbei, R., "Shaped pupil design for future space telescopes," Proc. SPIE, paper 9143-69, (2014).
2. Riggs, A., Groff, T., Carlotti, A., Kasdin, N., Cady, E., Kern, B., and Kuhnert, A., "Demonstration of symmetric dark holes using two deformable mirrors at the highcontrast imaging testbed," in [Proceedings of SPIE], 8864, 88640T (2013)
3. Traub, W.A., Kaltenegger, L., Jucks, K.W., Turnbull, M.C., "Direct imaging of Earth-like planets from space (TPF-C)", ProcSPIE, id. 626502 (2006)
4. Kuchner, Marc J., Traub, Wesley A., "A Coronagraph with a Band-limited Mask for Finding Terrestrial Planets", ApJ, 570, 900-908 (2002)
5. Rouan, D., Riaud, P., Boccaletti, A., Clénet, Y., and Labeyrie, A., "The four-quadrant phase mask coronagraph. I. Principle", PASP, 112, 1479-1486 (2000)
6. Mawet, D., Riaud, P., Absil, O. and Surdej, J., "Annular groove phase mask coronagraph", ApJ, 633, 1191-1200 (2005)
7. Slepian, D., "Analytic Solution of Two Apodization Problems", (1965).
8. Vanderbei, R., Kasdin, N.J., Spergel, D., Kuchner, M., "New pupil masks for highcontrast imaging", Proc SPIE, 5170, 49-56 (2003)
9. Carlotti, A., Vanderbei, R., Kasdin, N.J., "Optimal pupil apodizations of arbitrary aperturesfor high-contrast imaging", 19, 26796 (2011)
10.Guyon, O., "Phase-induced amplitude apodization of telescope pupils for extrasolar terrestrial planet imaging", A\&A, 404, 379-387 (2003)

References

11. Vanderbei, R., Traub W., "Pupil Mapping in Two Dimensions for High-Contrast Imaging", ApJ, 626, 1079-1090 (2005)
12. Codona, J. et al., "A high-contrast coronagraph for the MMT using phase apodization: design and observations at 5 microns and $2 \lambda / \mathrm{D}$ radius", ProcSPIE, id. 62691N (2006) 13. Soummer, R., "Apodized Pupil Lyot Coronagraphs for Arbitrary Telescope Apertures", A\&A, 618, L161-L164 (2005)
13. Soummer, R., et al., "Apodized Pupil Lyot Coronagraphs for Arbitrary Apertures. II. Theoretical Properties and Application to Extremely Large Telescopes", ApJ, 695 (2009) 15. Soummer, R., et al., "Apodized Pupil Lyot Coronagraphs for Arbitrary Apertures. III. Quasi-achromatic Solutions", ApJ, 729, id. 144 (2011)
14. Carlotti, A., "Apodized phase mask coronagraphs for arbitrary apertures", A\&A, 551, id.A10 (2013)
15. Carlotti, A., Mawet, D., Pueyo, L., "Apodized phase mask coronagraphs for arbitrary apertures. II. Comprehensive review of solutions for the vortex coronagraph", A\&A, 566, id.A31 (2014)
16. N'Diaye, M., et al., "Apodized Pupil Lyot Coronagraphs (APLC): reduced IWA and increased robustness to low-order aberrations", ProcSPIE (2014)
17. Guyon, O. et al., "Theoretical Limits on Extrasolar Terrestrial Planet Detection with Coronagraphs", ApJS, 167, 81-99 (2006)
18. Marois, C., et al., "Confidence Level and Sensitivity Limits in High-Contrast Imaging", ApJ, 673, 647-656 (2008)

References

21. Serabyn, G., Mawet, D., Burruss, R., "Imaging The Exoplanets In HR8799 With A Vector Vortex Coronagraph On The Palomar 1.5 M Diameter Well-corrected Subaperture", Bul. AAS
\#215, 42, 587 (2010)
22. Marois, C., Macintosh, B., Barman, T., Zuckerman, B., Song, I., Patience, J., Lafreniere, D., Doyon, R.,"Direct Imaging of Multiple Planets Orbiting the Star HR 8799", Science, Vol. 322, Iss. 5906, pp. 1348- (2008)
23. Kendrick, R. et al., "Closed-loop wave-front correction using phase diversity", Proc. SPIE, 3356, 844-85 (1998)
24. Malbet, F., Yu, J. W., Shao, M., "High-Dynamic-Range Imaging Using a Deformable Mirror for Space Coronography", PASP, 107, 386 (1995)
25. Pueyo, L., Kasdin, N.J., "Polychromatic Compensation of Propagated Aberrations for High-Contrast Imaging", ApJ, 666, 609-625 (2007)
26. Pueyo, L., Norman, C., "High-contrast Imaging with an Arbitrary Aperture: Active Compensation of Aperture Discontinuities", 769, id. 102 (2013)
27. Give'on, A. et al., "Broadband wavefront correction algorithm for high-contrast imaging systems", Proc. SPIE, 6691, id. 66910A (2007)
28. Groff, T., Kasdin, N.J., "Kalman filtering techniques for focal plane electric field estimation", JOSA, 30, 128 (2013)
