Understanding Planet Formation: Initial Disk Distribution

¹University of California Santa Cruz, ²University of Edinburgh, ³Arizona State University, ⁴University of Texas at Arlington, ⁵University of Delaware, ⁶University of Hawaii Manoa, ⁷Pennsylvania State University

Effects of Disk Density Profile on Planet Orbital Distribution

What do we expect?

How do we check?

Steeper Density Slope

Vary Density Slope $\Sigma_g \propto f_g r_{-}^{p_g} \exp[-r^{2+p_g}]$

Power Law Index	Migration On	Migration Off
-0.5	1.2e-231	1.4e-232
-1.0	1.4e-178	1.4e-232
-1.5	6.6e-156	1.4e-232
-2.0	1.1e-171	1.4e-232
-2.5	7.0e-182	1.4e-232

Increase in # of Closer Planets

DENSITY SLOPE ITERATIONDENSITY SLOPE ITERATIONWITH NO MIGRATIONWITH LIMITED MIGRATION

DENSITY SLOPE ITERATIONDENSITY SLOPE ITERATIONWITH NO MIGRATIONWITH LIMITED MIGRATION

Comparing with Observations...

DENSITY SLOPE ITERATIONDENSITY SLOPE ITERATIONWITH NO MIGRATIONWITH LIMITED MIGRATION

Method-Specific Comparisons:

surface density = C $r^{-1.5}$; limited migration on

What do we expect?

Larger Scaling Factor (Total Disk Mass)

More large, close-in planets

How do we check?

Vary Normalization Constant

$$\Sigma_g \propto f_g r^{p_g} \exp[-r^{2+p_g}]$$

Scaling Factor f _g	Migration On	Migration Off
1.0	3.4e-158	9.7e-236
5.0	1.8e-306	9.7e-236
10.0	0.0	9.7e-236
$* p_g = 1.5$		

DISK MASS ITERATION WITHDISK MASS ITERATION WITHNO MIGRATION(FULL) MIGRATION

DISK MASS ITERATION WITHDISK MASS ITERATION WITHNO MIGRATION(FULL) MIGRATION

Comparing with observations...

DISK MASS ITERATION WITHDISK MASS ITERATION WITHNO MIGRATION(FULL) MIGRATION

Method-Specific Comparisons:

MMSN disk; migration on full

Conclusions

Interesting way to see how the different physical processes interact with each other . . .

Some trends:

- Steeper disk slope -> more close-in planets
- Steeper disk slope -> more small planets
- Higher disk mass, no migration -> fewer small planets
- Higher disk mass, with migration -> lack of Jupiters

None of these match observations very well, especially super-Earth population . . . so lots of work for all of us to do!!

Acknowledgements

Worked based on GlobalPFE, a population synthesis code by Christoph Mordasini

Thanks to everyone else who helped make the group projects possible!