Post-formation dynamical evolution

Smadar Naoz UCLA

Sagan Workshop July 2015 Copernicus 1661

AstroDynamics

Our solar System

e~0

the rotation of the sun

Our solar System

Formation story

the rotation of

the star

Prograde

the rotation of

the star

the rotation of

the star

the rotation of

the star

Kepler planet candidates are in a very close orbit 90% of all planets and planet candidates are in a very close orbit Illustration of the planets and planet candidates as if they orbit a single star

Astrodynamics is alive!

Selected dynamical processes

> Planet-Planet scattering

> Mean motions resonances

Classical" secular evolution

> The eccentric Kozai-Lidov (EKL) mechanism

Selected dynamical processes

> Planet-Planet scattering

> Mean motions resonances

Classical" secular evolution

> The eccentric Kozai-Lidov (EKL) mechanism

Post evolution dynamics in planetary systems Short Time Scale 1. Scattering events Rasio & Ford 1996 -Packed systems, outcome: inclined, eccentric, ejection ejection 10^{3} 10² a, a(1-e), a(1+e) (AU) 10¹ tides 10⁰ Simulation Time: 20.0 years 10^{-1} credit: Fred Rasio 10^{-2} 2 8 10 12 4 6 0 time (10^6 year)

Nagasawa et al 2008

Selected dynamical processes

- > Planet-Planet scattering
- > Mean motions resonances
- Classical" secular evolution
- > The eccentric Kozai-Lidov (EKL) mechanism

Post evolution dynamicsin planetary systems $\underline{\text{Resonances}}$ $u_{nstable}$ 2. Mean Motion Resonances $\frac{P_1}{P_2} \sim \frac{n}{m}$

Post evolution dynamicsin planetary systemsResonancesResonances2. Mean Motion Resonances $\frac{P_1}{P_2} \sim \frac{n}{m}$ Problem: predicted migration rates: most planets in resonances.
But reality ...

- Few possible explanations:
 - Accretion of mass e.g., Petrovich et al (2013)
- Dissipation (maybe tides?) Lithwick & Wu (2012), Batygin & Morbidelli (2013)
- Resonance capture is temporary Goldreich & Schlichting (2014)
 and more

Selected dynamical processes

> Planet-Planet scattering

> Mean motions resonances

Classical" secular evolution

> The eccentric Kozai-Lidov (EKL) mechanism

Post evolution dynamics in planetary systems 3. The secular interactions

smash the mass

Post evolution dynamics in planetary systems 3. The secular interactions ~circular orbits, concentric, coplanar

Laskar & Gastineau (2009)

Selected dynamical processes

> Planet-Planet scattering

> Mean motions resonances

Classical" secular evolution

> The eccentric Kozai-Lidov (EKL) mechanism

Post evolution dynamics in planetary systems Long Time Scale 4. The secular interactions ~can be eccentric, hierarchical, inclined Analytical treatment 3 body config. Perturbations from a far away perturber

The Kozai-Lidov Formalism Not to scale! Hierarchical triple system inclination "outer" Orbit normal ? "inner"

The Kozai-Lidov Formalism The eccentricity and inclination oscillate

Kozaí 1962, Lidov 1962

Conservation of the z component of angular momentum for both the inner outer orbits The orbital elements:

Eccentricity: e $L_z \sim \sqrt{1 - e^2} \cos i = \text{const}$

Inclination: i

Prograde orbit cannot become retrograde

Naoz et al, Nature (2011), arXiv:1011.2501 Naoz et al (2013), MNRAS, arXiv:1107.2414

Is it constant?

Is it constant?

inner "1"

Is it constant?

 $L_2 \sim \sqrt{1 - e_2^2}$ $L_1 \sim \sqrt{1 - e_1^2}$

Adding vector ... Is it constant?

 $\vec{L}_{tot} = \vec{L}_1 + \vec{L}_2$

 $\vec{L}_{tot} = \vec{L}_1 + \vec{L}_2$ $\vec{L}_2 = \vec{L}_{tot} - \vec{L}_1$

 $L_{tot} \parallel \hat{z}$ $L_{2} \sim \sqrt{1 - e_{2}^{2}} \qquad L_{1} \sim \sqrt{1 - e_{1}^{2}}$ $L_{2,z} \sim \sqrt{1 - e_{2}^{2}} \cos i_{2} \qquad L_{1,z} \sim \sqrt{1 - e_{1}^{2}} \cos i_{1}$

outer "2"

inner "1"

 $\vec{L}_{tot} = \vec{L}_1 + \vec{L}_2$ $\vec{L}_2 = \vec{L}_{tot} - \vec{L}_1$ $L_2^2 = L_{tot}^2 + L_1^2 - 2L_{tot}L_1 \cos i_1$ $\vec{L}_{1,z}$

 $L_{tot} \parallel \hat{z}$ $L_{2} \sim \sqrt{1 - e_{2}^{2}} \qquad L_{1} \sim \sqrt{1 - e_{1}^{2}}$ $L_{2,z} \sim \sqrt{1 - e_{2}^{2}} \cos i_{2} \qquad L_{1,z} \sim \sqrt{1 - e_{1}^{2}} \cos i_{1}$

outer "2"

inner "1"

 $\vec{L}_{tot} = \vec{L}_1 + \vec{L}_2$ $\vec{L}_2 = \vec{L}_{tot} - \vec{L}_1$ $L_2^2 = L_{tot}^2 + L_1^2 - 2L_{tot}L_1\cos i_1$

Yoshihde Kozai

THE ASTRONOMICAL JOURNAL

VOLUME 67, NUMBER 9

 $L_{2,7} \sim \sqrt{1-e_2^2} \cos i_2$ $L_{1,7} \sim \sqrt{1-e_1^2} \cos i_1$

 $L_{tot} \parallel \hat{z}$

 $L_1 \sim \sqrt{1-e_1^2}$

NOVEMBER 1962

Secular Perturbations of Asteroids with High Inclination and Eccentricity

 $L_2 \sim \sqrt{1-e_2^2}$

YOSHIHIDE KOZAI* Smithsonian Astrophysical Observatory, Cambridge, Massachusetts (Received August 29, 1962)

Secular perturbations of asteroids with high inclination and eccentricity moving under the attraction of

 $\vec{L}_{tot} = \vec{L}_1 + \vec{L}_2$ $\vec{L}_2 = \vec{L}_{tot} - \vec{L}_1$ $L_2^2 = L_{tot}^2 + L_1^2 - 2L_{tot}L_1\cos i_1$

for the quadrupole approx. $\sim (a_1/a_2)^2$:

 $L_2 \sim \sqrt{1 - e_2^2}$

$$L_2 = Const.$$

 $L_{1,7}$

symmetry for rotation of the outer orbit

er "1"

 $L_{2,z} \sim \sqrt{1 - e_2^2} \cos i_2$ $L_{1,z} \sim \sqrt{1 - e_1^2} \cos i_1$

 $L_{tot} \parallel \hat{z}$

 $L_1 \sim \sqrt{1 - e_1^2}$

 $L_{tot} \parallel \hat{z}$

 $L_{2,7} \sim \sqrt{1-e_2^2} \cos i_2$ $L_{1,7} \sim \sqrt{1-e_1^2} \cos i_1$

 $L_1 \sim \sqrt{1 - e_1^2}$

 $\vec{L}_{tot} = \vec{L}_1 + \vec{L}_2$ $\vec{L}_2 = \vec{L}_{tot} - \vec{L}_1$ $L_2^2 = L_{tot}^2 + L_1^2 - 2L_{tot}L_1 \cos i_1$ $\vec{L}_2 = L_{tot}^2 + L_1^2 - 2L_{tot}L_1 \cos i_1$

for the quadrupole approx. $\sim (a_1/a_2)^2$:

 $L_2 \sim \sqrt{1 - e_2^2}$

 $L_2 = Const.$ $L_{1,z} = Const.$ $L_{2,z} = Const.$ $L_1 \neq Const.$ $\mathcal{H}_{quad}(\boldsymbol{\omega}_1)$

Yoshihde Kozai

 $\vec{L}_{tot} = \vec{L}_1 + \vec{L}_2$ $\vec{L}_2 = \vec{L}_{tot} - \vec{L}_1$ $L_2^2 = L_{tot}^2 + L_1^2 - 2L_{tot}L_1 \cos i_1$

for the quadrupole approx. $\sim (a_1/a_2)^2$:

 $L_2 \sim \sqrt{1 - e_2^2}$

 $L_{2} = Const.$ $L_{1,z} \times Const.$ $L_{2,z} \times Const.$

 $L_{1,7}$

 $L_1 \neq Const.$

 $\mathcal{H}_{quad}(\boldsymbol{\omega}_1,\boldsymbol{\Omega}_1-\boldsymbol{\Omega}_2)$ π

 $L_{2.7} \sim \sqrt{1 - e_2^2} \cos i_2$ $L_{1.7} \sim \sqrt{1 - e_1^2} \cos i_1$

 $L_{tot} \parallel \hat{z}$

 $L_1 \sim \sqrt{1 - e_1^2}$

 $\frac{df}{fx}_{x=2} \neq \frac{df(x=2)}{dx}$

Naoz et al, Nature (2011), arXiv:1011.2501

The Eccentricity and inclination oscillate

Conservation of the z component of angular momentum for both the inner outer orbits The orbital elements: Eccentricity: e $L_z \sim \sqrt{1 - e^2} \cos i = \text{const}$ Inclination: i

*L*_{z1} conserved only to lowest order (quadrupole) and for a test particle (massless planet)!

Naoz et al, Nature (2011), arXiv:1011.2501 Naoz et al (2013), MNRAS, arXiv:1107.2414

Our treatment The eccentric Kozaí-Lidov mechanism - KEL

- Allow for the z-component of the angular momenta of the inner and outer orbit to change already at the quadrupole level
- Expanding the approximation to the octupole level (e.g., Ford et al 2000, Blaes et al 2002 <u>already done before us!!!</u>)
- Soth the magnitude and orientation of the angular momentum can change

larger parts of the parameter space

Naoz et al, Nature (2011), arXiv:1011.2501 Naoz et al (2013), MNRAS, arXiv:1107.2414 for test particle approx. see: Lithwick & **Naoz** (2011), ApJ, arXiv:1106.3329 Katz, Dong Malhotra (2011), arXiv:1106.3340

i<90 deg - prograde

Lets...flip the planet

point mass limit Lets...flip the planet

Example system: a=6AU, a=100AU, m=1.Msun M=1Mj, M=40Mj i=65 deg secular dynamics + GR

GR effects: e.g., Ford et al 2000, Naoz, Kocsís, Loeb, Yunes 2013

(a) inner orbit inclination

(b) inner orbit eccentricity

(c) inner orbit z-com. angular momentum

(d) inner orbit z-com. angular momentum

Naoz et al, Nature (2011)

point mass limit Lets...flip the planet

Example system: a=6AU, a=100AU, m=1.Msun M=1Mj, M=40Mj i=65 deg secular dynamics + GR

180

GR effects: e.g., Ford et al 2000, Naoz, Kocsís, Loeb, Yunes 2013

(a) inner orbit inclination

(b) inner orbit eccentricity

(c) inner orbit z-com. angular momentum

(d) inner orbit z-com. angular momentum

Naoz et al, Nature (2011)

(a)

 $M_1 = 1 \,\mathrm{M}_{\odot}$ $M_2 = 1 M_J$ $M_3 = 4 M_J$ $a_1 = 5 \text{ AU}$ $a_2 = 51 \text{ AU}$

 $i = 71^{\circ}$

Question

> Why high inclination >40°?
> Is high inclination required also in the EKL mechanism?
> What about chaos?

EKL and the Pendulum

Quadrupole test particle limit:

Rotation/circulation

círcular outer orbit

 $e_0 = 0$

Li, Naoz, Kocsis, Loeb 2014, ApJ arXiv:1310.6044 Li, Naoz, Holman, Loeb 2014, ApJ arXiv:1405.0494

Q: Is the 40 - 140 degrees limits hold? A: No

Q: Why Chaos?

A: Octupole - chaotic behavior crossing the separatrix

chaos in these systems:Holman, Touma & Tremaine (1997)

Maximum eccentricity and initial conditions

Li, Naoz, Holman, Loeb 2014, ApJ, arXiv:1405.0494

Eccentricity spikes

Maximum eccentricity at the test particle regime

Li, **Naoz** et al, (2014), ApJ 785, 116 + ApJ 791, 86

Gongjie Li

Astrodynamics is alive!

