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Kepler planet candidates are in a very close orbit 

movie by Alex Parker

Illustration of the planets and planet candidates as if they orbit a single star

90% of all planets and planet candidates are in a very close orbit 
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Post evolution dynamics 
in planetary systems

1. Scattering events   
~Packed systems, outcome: inclined, eccentric, ejection   

Short Time Scale

credit: Fred Rasio

‘z with the inclination by the Kozai mechanism. Although the
amplitude of oscillations of e and i decay after t ’ 1:7 ; 106 yr,
they are pumped up again at t ’ 2:5 ; 106 yr. At 3:7 ; 106 yr,
the planet acquires a very large oscillation amplitude of incli-
nation and eccentricity. The eccentricity reaches the maximum
value of a Kozai cycle at 3:9 ;106 yr, at which time the pericenter
approaches the host star. Then the planet is tidally moved slightly
inward, but the damping of the semimajor axis is interruptedwhen
the eccentricity reaches the maximum value of a Kozai cycle and
turns to decrease. At 4:1 ; 106 yr, the pericenter distance q can
be small enough for tidal circularization during a Kozai cycle.
Since q becomes<0.01 AU in this case, the orbit is circularized
on a timescale of 104 yr.

Another example from set T1 is shown in Figure 8. In this
case, one of the planets enters a hyperbolic orbit at 2:2 ; 106 yr.
Two planets are left in stable orbits at 2.3 and 80 AU. However,
the innermost planet is in the Kozai state. At the time of isolation,
the eccentricity and inclination of the innermost planet are 0.49
and 1.5 rad, respectively. The eccentricity and inclination oscillate
by the Kozai mechanism. Because the perturbing planet is located
much further (!80 AU) than in the previous case in Figure 6,
eccentricity increases more slowly. At 10:5 ; 106 yr, the eccen-
tricity reaches 0.984. Since q reaches ’0.02 AU, the planet’s e
and a are tidally damped. Since the damping timescale of the
eccentricity (!e) is longer than that of the semimajor axis (see
Fig. 4), the eccentricity decays after the semimajor axis sig-
nificantly decreases. In contrast to set V, q gradually increases
during the tidal circularization in set T. Since the damping time-
scale is a strongly increasing function of q, the tidal circularization
slows down with time in this set. As a result, the eccentricity is
not fully damped in 108 yr (e ¼ 0:08 at 108 yr in this example).
Wu (2003) and Wu & Murray (2003) also pointed out the mi-
gration due to a coupled effect of the Kozai mechanism and tidal
circularization for a planet in a binary system and called it ‘‘Kozai

migration.’’ They considered the Kozai mechanism induced by
perturbations of a companion star, while we consider that of outer
planets in orbital crossings. If the planet scattered inward has
small h ¼ (1# e2) cos2i, it is subject to tidal circularization.

3.4. Final Orbital Distribution

The distribution of final eccentricity of innermost planets is
shown in Figure 9. It is divided into three groups: a peak at e >
0:95, peak at e < 0:05, and a broad distribution between the peaks.
The peak at e > 0:95 is composed mainly of planets in set N
(long-dashed line). This reflects a fact that we have stopped the
simulation in set N when the planet hits the surface of the host
stars. In other sets these planets are tidally circularized. Almost
all the circularized planets go to the most prominent peak at e <
0:05. Excluding these two peaks, the eccentricity is broadly dis-
tributed centered at e ! 0:5, as previous authors found.

The planets that are injected into the inner orbits with moderate
eccentricities but have not suffered tidal circularization are dis-
tributed at around a ! 2:3 AU, as the energy conservation law
requires. The pericenter distribution is shown in Figure 10. The

Fig. 6.—Typical evolution of the semimajor axes (a) of three planets. Thin
lines show evolution of pericenters [a(1# e)] and apocenters [a(1þ e)]. The
planet indicated by solid line is circularized at 4:13 ; 106 yr.

Fig. 7.—Evolution of eccentricity e and inclination i of the circularized planet
shown in Fig. 6. Solid and dotted lines indicate e and i, respectively.

Fig. 8.—Evolution of the semimajor axes of three planets. The meaning of
the lines is the same as Fig. 6. One planet shown by dotted line is ejected from
the system at 2:2 ; 106 yr. The planet indicated by solid line is circularized at
’1:1 ; 107 yr.

Fig. 9.—Eccentricity histogram of the planets that were scattered into inner
orbits. Long-dashed, solid, dotted, and dash-dotted lines correspond to sets N, V,
T1, and T4, respectively.
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‘z with the inclination by the Kozai mechanism. Although the
amplitude of oscillations of e and i decay after t ’ 1:7 ; 106 yr,
they are pumped up again at t ’ 2:5 ; 106 yr. At 3:7 ; 106 yr,
the planet acquires a very large oscillation amplitude of incli-
nation and eccentricity. The eccentricity reaches the maximum
value of a Kozai cycle at 3:9 ;106 yr, at which time the pericenter
approaches the host star. Then the planet is tidally moved slightly
inward, but the damping of the semimajor axis is interruptedwhen
the eccentricity reaches the maximum value of a Kozai cycle and
turns to decrease. At 4:1 ; 106 yr, the pericenter distance q can
be small enough for tidal circularization during a Kozai cycle.
Since q becomes<0.01 AU in this case, the orbit is circularized
on a timescale of 104 yr.

Another example from set T1 is shown in Figure 8. In this
case, one of the planets enters a hyperbolic orbit at 2:2 ; 106 yr.
Two planets are left in stable orbits at 2.3 and 80 AU. However,
the innermost planet is in the Kozai state. At the time of isolation,
the eccentricity and inclination of the innermost planet are 0.49
and 1.5 rad, respectively. The eccentricity and inclination oscillate
by the Kozai mechanism. Because the perturbing planet is located
much further (!80 AU) than in the previous case in Figure 6,
eccentricity increases more slowly. At 10:5 ; 106 yr, the eccen-
tricity reaches 0.984. Since q reaches ’0.02 AU, the planet’s e
and a are tidally damped. Since the damping timescale of the
eccentricity (!e) is longer than that of the semimajor axis (see
Fig. 4), the eccentricity decays after the semimajor axis sig-
nificantly decreases. In contrast to set V, q gradually increases
during the tidal circularization in set T. Since the damping time-
scale is a strongly increasing function of q, the tidal circularization
slows down with time in this set. As a result, the eccentricity is
not fully damped in 108 yr (e ¼ 0:08 at 108 yr in this example).
Wu (2003) and Wu & Murray (2003) also pointed out the mi-
gration due to a coupled effect of the Kozai mechanism and tidal
circularization for a planet in a binary system and called it ‘‘Kozai

migration.’’ They considered the Kozai mechanism induced by
perturbations of a companion star, while we consider that of outer
planets in orbital crossings. If the planet scattered inward has
small h ¼ (1# e2) cos2i, it is subject to tidal circularization.

3.4. Final Orbital Distribution

The distribution of final eccentricity of innermost planets is
shown in Figure 9. It is divided into three groups: a peak at e >
0:95, peak at e < 0:05, and a broad distribution between the peaks.
The peak at e > 0:95 is composed mainly of planets in set N
(long-dashed line). This reflects a fact that we have stopped the
simulation in set N when the planet hits the surface of the host
stars. In other sets these planets are tidally circularized. Almost
all the circularized planets go to the most prominent peak at e <
0:05. Excluding these two peaks, the eccentricity is broadly dis-
tributed centered at e ! 0:5, as previous authors found.

The planets that are injected into the inner orbits with moderate
eccentricities but have not suffered tidal circularization are dis-
tributed at around a ! 2:3 AU, as the energy conservation law
requires. The pericenter distribution is shown in Figure 10. The

Fig. 6.—Typical evolution of the semimajor axes (a) of three planets. Thin
lines show evolution of pericenters [a(1# e)] and apocenters [a(1þ e)]. The
planet indicated by solid line is circularized at 4:13 ; 106 yr.

Fig. 7.—Evolution of eccentricity e and inclination i of the circularized planet
shown in Fig. 6. Solid and dotted lines indicate e and i, respectively.

Fig. 8.—Evolution of the semimajor axes of three planets. The meaning of
the lines is the same as Fig. 6. One planet shown by dotted line is ejected from
the system at 2:2 ; 106 yr. The planet indicated by solid line is circularized at
’1:1 ; 107 yr.

Fig. 9.—Eccentricity histogram of the planets that were scattered into inner
orbits. Long-dashed, solid, dotted, and dash-dotted lines correspond to sets N, V,
T1, and T4, respectively.
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Resonances
2. Mean Motion Resonances    P1

P2
~ n
m

outcome: in most cases lead to unstable config. 
sometimes we stable config. 

Galilean Satellites 
Io, Europa, and Ganymede 1:2:4 

Europa

Io

Ganymede

Jupiter

movie credit: Man Hoi Lee’s home page

Laplace resonance
GJ 876

– 28 –

T = 0 days T = 30 days

T = 60 days T = 90 days

6.97o
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3.48o
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Fig. 7.— Four configuration snapshots of the GJ 876 planetary system. Each panel

shows the positions of the four planets at 120 successive one-day intervals starting from

JD=2450608.093 (T=0 days), with the orbital positions at the listed times given by red

dots. The diagrams are drawn in a frame that rotates to match the mean orbital precession

of planet “b,” which amounts to −10.45◦ over the 90 days shown. Planet “b”’s apsidal line

coincides with the x-axis. The apses for planets “c” and “e” are drawn with smaller-dashed

and larger-dashed lines, respectively.

Rivera et al 2010!

Orbital Time Scale
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Chamberlin (2007)
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Resonances
2. Mean Motion Resonances    P1

P2
~ n
m

The Astronomical Journal, 147:32 (11pp), 2014 February Goldreich & Schlichting
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Figure 1. Histogram showing the period ratios of Kepler planet candidates
residing in multiple planet systems as of 2013 January. The bin sizes are 0.025.
The locations of dominant mean motion resonances are indicated by dashed
black lines. Most planets do not reside in or close to resonances. However, there
is a significant excess of planet pairs with period ratios slightly larger than those
for exact mean motion resonances.
(A color version of this figure is available in the online journal.)

2. RESONANCE IN THE CIRCULAR RESTRICTED
THREE-BODY PROBLEM WITH DISSIPATION

Consider a system of two planets in orbit around a host
star. Assume that the outer planet moves on a fixed circular
orbit. Close to a first order j + 1:j mean motion resonance,
the dominant term in the inner planet’s disturbing function has
resonant argument φ such that

φ = (j + 1)λ′ − jλ − ϖ, φ̇ = (j + 1)n′ − jn − ϖ̇ ,

φ̈ = − j ṅ − ϖ̈ , (1)

where primes distinguish the outer planet and λ, n, and ϖ denote
mean longitude, mean motion, and longitude of pericenter. At
conjunction, λ′ = λ so φ is a measure of the displacement of
the longitude of conjunction from the inner planet’s pericenter.

Lagrange’s equations of motion to first order in eccentricity
for the inner planet in the vicinity of the resonance read

ṅ = 3jβµ′en2 sin φ − n

τn

+ p
e2n

τe

, (2)

ė = βµ′n sin φ − e

τe

, (3)

ϖ̇ = −βµ′

e
n cos φ, (4)

φ̈ = −3j 2βµ′en2 sin φ −
(

βµ′n

e

)2

cos φ sin φ

−βµ′n

e
sin φφ̇ +

βµ′n

eτe

cos φ + j
n

τn

− 3j
e2n

τe

, (5)

where e and a are eccentricity and semimajor axis, µ′ is the ratio
of the outer planet’s mass to that of the star, τn ≡ n/|ṅ| > 0,
τe ≡ e/|ė| > 0, and β ≈ 0.8j . In Equation (2) the sign
of τn is chosen for convergent migration. The final term
in Equation (2) accounts for the contribution of eccentricity
damping to changing the mean motion. For the particular case of
eccentricity damping arising from energy dissipation at constant
angular momentum, as applies to tides raised in a planet by its
parent star, p ≈ 3. For simplicity, we assume p = 3 throughout
the body of our paper but provide results applicable for general

p > 0 in the Appendix. Although we will first examine the
dynamics of the resonance without dissipation, we include
the eccentricity damping and migration terms in Equations (2)
and (3) such that we do not have to repeat the above equations
later in this section.

Near resonance, e = O(µ′1/3) and d/dt = O(µ′2/3n).
Thus the first and second terms on the right-hand side (rhs)
of Equation (5) dominate over the third for small amplitude
librations (i.e., φ = δφ ≪ 1). In the absence of dissipation,
librations of φ are centered on φ = 0, e = e0 (e.g., Murray &
Dermott 1999) where

e0 = βµ′n

jn − (j + 1)n′ . (6)

From Equation (5), it follows that the frequency of small
librations, ω, satisfies

ω2

n2
= 3j 2βµ′e0 +

(
βµ′

e0

)2

. (7)

In the absence of migration and eccentricity damping,
τn and τe → ∞, Equations (2)–(4) admit two integrals4

k(φ, e2) =
(

3
2
j 2e2 − βµ′

e
cos φ

)
+

φ̇

n
, (8)

and

H(φ, e2) =
(

ke2 − 3
4
j 2e4 + 2βµ′e cos φ

)
. (9)

The integral k exists because with only one resonant argument,
variations of n and e are related. H, the Jacobi constant, is also
the Hamiltonian with canonically conjugate momentum, e2, and
coordinate, φ.

The topology of the phase-space as defined by H for fixed k
changes abruptly across k = kcrit, where

kcrit = 34/3

2
(jβµ′)2/3 ∼ j 4/3µ′2/3. (10)

For k < kcrit, there is one (stable) fixed point whereas there are
three (two stable and one unstable) fixed points for k > kcrit.5
These distinct topologies are illustrated in Figure 2. For k > kcrit
the level curve emanating from the unstable fixed point is
appropriately called a separatrix because it separates the regions
surrounding the two stable fixed points. The stable fixed point
at

φ = 0 and e0 = 2
j 2/3

(
βµ′

3

)1/3 (
k

kcrit

)1/2

= βµ′n

jn − (j + 1)n′ (11)

is present for all k and corresponds to a periodic orbit with
jn > (j + 1)n′. It is located at the global maximum of H

4 In these integrals, n is evaluated at exact resonance except where it appears
as part of φ̇.
5 The fixed points correspond to the real roots of the expression for k = 0
with φ = 0.

2

Problem: predicted migration rates: most planets in resonances. 
But reality …

Extrasolar….

Goldreich & Schlichting (2014)

Few possible explanations:  
• Accretion of mass e.g., 

Petrovich et al (2013) 
• Dissipation (maybe 

tides?) Lithwick & Wu 
(2012), Batygin & 
Morbidelli (2013) 

• Resonance capture is 
temporary Goldreich & 
Schlichting (2014) 

• and more …. 
!
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~circular orbits, concentric, coplanar  

Laskar & Gastineau (2009) 
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Analytical treatment 3 
body config. 

Perturbations from a far 
away perturber 
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The Kozai-Lidov Formalism



The eccentricity and inclination oscillate  
Kozai 1962,  Lidov 1962

The Kozai-Lidov Formalism

For initially inclined system ≳ 40o 



The eccentricity and inclination oscillate  
Conservation of the z component of 
angular momentum for both the inner 
outer orbits
The orbital elements:  

Eccentricity: e 

Inclination: i

Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 8 March 2011 (MN LATEX style file v2.2)

On the Kozai mechanism and angular momentum
conservation

Smadar Naoz†⋆, Will M. Farr†, Yoram Lithwick†, Frederic A. Rasio†
† CIERA, Northwestern University, Evanston, IL 60208

8 March 2011

ABSTRACT
The treatment of hierarchical triple configurations has proven to be very useful in
many astrophysical contexts, from planetary to triple star system. In the secular ap-
proximation the orbits may change shape and orientation. In particular, for highly
inclined systems, the Kozai-Lidov mechanism can produce large-amplitude oscilla-
tions of the eccentricities. Here we re-derive the secular evolution equations including
both quadrupole and octupole orders using Hamiltonian perturbation theory. Our new
derivation corrects an error in previous treatments of the secular evolution equations.
Our new derivation agrees with the “usual” treatment only in the limit where the
outer orbit angular momentum is much larger than the inner one is. Assuming, as
done in previous treatments, that the inner z-component angular momentum is con-
served, (

√
1− e2 cos i = const) can produce erroneous results for various astrophysical

systems, such as planetary systems and triple stars, where the inner orbit’s angular
momentum is not negligible. We discuss a few interesting implications of using the
correct formalism.

1 INTRODUCTION

Triple star systems are believed to be very common (e.g.,
Eggleton et al. 2007; Tokovinin 1997). From dynamical sta-
bility arguments there must be hierarchical triples, in which
the (inner) binary is orbited by a third body on a much
wider orbit. Probably more than 50% of bright stars are at
least double (Eggleton et al. 2007; Tokovinin 1997). Given
the selection effects against finding faint and distant com-
panions we can be reasonably confident that the proportion
is actually substantially greater. Tokovinin (1997) showed
that 40% of binary stars with period < 10 d in which the
primary is a dwarf (0.5−1.5M⊙) have at least one additional
companion. He found that the fraction of triples and higher
multiples among binaries with period (10−100 d) is ∼ 10%.
Moreover, Pribulla & Rucinski (2006) have surveyed a sam-
ple of contact binaries, and noted that among 151 contact
binaries brighter than 10 mag., 42±5% are at least triple.

Many close stellar binaries with two compact objects are
likely produced through triple evolution. The secular evolu-
tion (i.e., acting on longer timescale compared to the orbital
periods), and specifically, Kozai cycling (see below), have
been proposed as an important element in the evolution of
triple stars (e.g. Mazeh & Shaham 1979; Kiseleva et al. 1998;
Fabrycky & Tremaine 2007; Perets & Fabrycky 2009). In
addition, Kozai cycling has been suggested to play impor-
tant role in both the growth of black holes at the centers
of dense star clusters and the formation of short-period bi-
nary black holes (Wen 2003; Miller & Hamilton 2002; Blaes
et al. 2002). Moreover, the dense environment in globular
clusters is thought to play an important role in the forma-
tion of bright XRBs. Recently, Ivanova et al. (2010) showed

that the most important formation mechanism for black hole
XRBs in clusters may be triple-induced mass transfer in a
black hole – white dwarf binary.

Secular perturbations in triple system also play an im-
portant role in solar system dynamics. Kozai (1962) studied
the gravitational perturbation on a inclined asteroid arise
form Jupiter in our own solar system. In this hierarchical
configuration the asteroid, a test particle, inclination and
eccentricity fluctuate on time scale larger than the asteroid
orbital time scale. Jupiter carry most of the angular momen-
tum of the system and thus Lz,1, the component of the inner
orbit’s angular momentum along the total angular momen-
tum, is very nearly constant. Recently it was also shown that
considering binary minor planets (both main belt binaries
and trans Neptunein objects), as a triple configuration where
the third object is the sun,can be very useful in understand-
ing the present day observations. Specifically binary minor
planets evolution is effected by the secular gravitational per-
turbation form the sun (Perets & Naoz 2009) which results
on their orbital parameters distribution we see today (Naoz
et al. 2010).

Triple configuration had be shown to be very useful
also in studying extrasolar planets evolution (e.g., Innanen
et al. 1997; Wu & Murray 2003; Fabrycky & Tremaine 2007;
Wu et al. 2007; Naoz et al. 2010). In Naoz et al. (2010) we
showed that a system composed from a star and a Jupiter
like planet (the inner binary) being perturbed by an outer far
away planet can capture (when including tidal friction) the
Jupiter planet to a very close proximity to the star, change
its inclination and even flip its orientation completely. Many
studies of secular perturbations in hierarchical triples con-
sidered a stellar-mass perturber, for which Lz,1 is very nearly

c⃝ 0000 RAS

Lz~  

Naoz et al, Nature (2011), arXiv:1011.2501

Kozai 1962,  Lidov 1962

Prograde orbit cannot become 
retrograde

Naoz et al (2013),MNRAS, arXiv:1107.2414

The Kozai-Lidov Formalism



Is it constant?

inner “1”

outer “2”



Is it constant?

inner “1”

outer “2”



Is it constant?

inner “1”

outer “2”

L1 ~ 1− e1
2L2 ~ 1− e2

2



Is it constant?

inner “1”

outer “2”

L1 ~ 1− e1
2L2 ~ 1− e2

2

Ltot || ẑ
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ABSTRACT
The treatment of hierarchical triple configurations has proven to be very useful in
many astrophysical contexts, from planetary to triple star system. In the secular ap-
proximation the orbits may change shape and orientation. In particular, for highly
inclined systems, the Kozai-Lidov mechanism can produce large-amplitude oscilla-
tions of the eccentricities. Here we re-derive the secular evolution equations including
both quadrupole and octupole orders using Hamiltonian perturbation theory. Our new
derivation corrects an error in previous treatments of the secular evolution equations.
Our new derivation agrees with the “usual” treatment only in the limit where the
outer orbit angular momentum is much larger than the inner one is. Assuming, as
done in previous treatments, that the inner z-component angular momentum is con-
served, (

√
1− e2 cos i = const) can produce erroneous results for various astrophysical

systems, such as planetary systems and triple stars, where the inner orbit’s angular
momentum is not negligible. We discuss a few interesting implications of using the
correct formalism.

1 INTRODUCTION

Triple star systems are believed to be very common (e.g.,
Eggleton et al. 2007; Tokovinin 1997). From dynamical sta-
bility arguments there must be hierarchical triples, in which
the (inner) binary is orbited by a third body on a much
wider orbit. Probably more than 50% of bright stars are at
least double (Eggleton et al. 2007; Tokovinin 1997). Given
the selection effects against finding faint and distant com-
panions we can be reasonably confident that the proportion
is actually substantially greater. Tokovinin (1997) showed
that 40% of binary stars with period < 10 d in which the
primary is a dwarf (0.5−1.5M⊙) have at least one additional
companion. He found that the fraction of triples and higher
multiples among binaries with period (10−100 d) is ∼ 10%.
Moreover, Pribulla & Rucinski (2006) have surveyed a sam-
ple of contact binaries, and noted that among 151 contact
binaries brighter than 10 mag., 42±5% are at least triple.

Many close stellar binaries with two compact objects are
likely produced through triple evolution. The secular evolu-
tion (i.e., acting on longer timescale compared to the orbital
periods), and specifically, Kozai cycling (see below), have
been proposed as an important element in the evolution of
triple stars (e.g. Mazeh & Shaham 1979; Kiseleva et al. 1998;
Fabrycky & Tremaine 2007; Perets & Fabrycky 2009). In
addition, Kozai cycling has been suggested to play impor-
tant role in both the growth of black holes at the centers
of dense star clusters and the formation of short-period bi-
nary black holes (Wen 2003; Miller & Hamilton 2002; Blaes
et al. 2002). Moreover, the dense environment in globular
clusters is thought to play an important role in the forma-
tion of bright XRBs. Recently, Ivanova et al. (2010) showed

that the most important formation mechanism for black hole
XRBs in clusters may be triple-induced mass transfer in a
black hole – white dwarf binary.

Secular perturbations in triple system also play an im-
portant role in solar system dynamics. Kozai (1962) studied
the gravitational perturbation on a inclined asteroid arise
form Jupiter in our own solar system. In this hierarchical
configuration the asteroid, a test particle, inclination and
eccentricity fluctuate on time scale larger than the asteroid
orbital time scale. Jupiter carry most of the angular momen-
tum of the system and thus Lz,1, the component of the inner
orbit’s angular momentum along the total angular momen-
tum, is very nearly constant. Recently it was also shown that
considering binary minor planets (both main belt binaries
and trans Neptunein objects), as a triple configuration where
the third object is the sun,can be very useful in understand-
ing the present day observations. Specifically binary minor
planets evolution is effected by the secular gravitational per-
turbation form the sun (Perets & Naoz 2009) which results
on their orbital parameters distribution we see today (Naoz
et al. 2010).

Triple configuration had be shown to be very useful
also in studying extrasolar planets evolution (e.g., Innanen
et al. 1997; Wu & Murray 2003; Fabrycky & Tremaine 2007;
Wu et al. 2007; Naoz et al. 2010). In Naoz et al. (2010) we
showed that a system composed from a star and a Jupiter
like planet (the inner binary) being perturbed by an outer far
away planet can capture (when including tidal friction) the
Jupiter planet to a very close proximity to the star, change
its inclination and even flip its orientation completely. Many
studies of secular perturbations in hierarchical triples con-
sidered a stellar-mass perturber, for which Lz,1 is very nearly
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Our treatment
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Example system: a1=6AU, a2=100AU, m1=1.Msun M2=1Mj, M3=40Mj i=65 deg secular dynamics + GR
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× (3 + cos(2i2)) + (2 + 3e21)4 sin(i1)
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Note that the factor 4 difference between our C2 and Ford
et al. (2000) is because of difference definitions Will we
can change it later, now I just want to be consistent
with our Mathmatica files

In the limiting case where G2 >> G1, i2 → 0 we get
the former Hamiltonian:

H2(G2 >> G1) =
C2

4

(
2 + 3e21 − 3 sin i2tot[5e

2
1 sin g

2
1 + 1− e21]

)
.(36)

4.2 Equation of motion

In the former formalism the Hamiltonian was not de-
pended on the longitude of ascending nodes, and thus the
z-component angular momenta were constant. However, cor-
recting that we have also evolution ofH1 andH2, which from
eq. (15) are related to the time derivative of G1 by1

Ḣ1 =
G1Ġ1

Gtot
. (37)

and Ḣ1 = −Ḣ2. From relations (6) we have Ḣ1 = ∂H/∂h1,
and Ġ1 = ∂H/∂g1. The latter is a known solution:

Ġ1 = −15
4

sin2 itot sin(2g1) . (38)

Unlike the former formalism we introduce the time evolution
of the the z-component angular momentum:

Ḣ1 =
C2

64
{−240e21 cos i1 cos(2∆Ω) sin

2 i2 sin(2g1) (39)

+ 120e21 cos∆Ω sin i1 sin(2i2) sin(2g1) + 12[2 + 3e21

− 5e21 cos(2g1)] sin(2i1) sin(2i2) sin∆Ω+ 6 sin2 i2 sin(2∆Ω)

× [10e21 cos(2g1)(3 + cos(2i1)) + 4 sin2 i2(2 + 3e21)]} .

In this stage we can place ∆Ω = π and also replace for
simplicity i1 + i2 = itot, thus:

Ḣ1 = −15
4

sin i2 sin itot sin(2g1) . (40)

We now use the sinuses law Gtot/ sin itot = G1/ sin i2 =
G2/ sin i1, thus, sin i2 = G1 sin itot/Gtot, so

Ḣ1 = − G1

Gtot

15
4

sin2 itot sin(2g1) , (41)

which satisfies the relation in eq. (37).
The time evolution of the argument of periphrasis for

the inner and outer orbits are give by:

ġ1 =
2C2

3

{
1
G1

[4 cos2 itot + (5 cos(2g1)− 1) (42)

1 Note that in the quadrupole approximation the Hamiltonian
is not defendant on g2, thus the magnitude of the outer orbit
angular momentum G2 is constant

× (1− e21 − cos2 itot)] +
cos itot
G2

[2

+ e21(3− 5 cos(2g1))]

}
,

and

ġ2 = 12C2

{
2 cos itot

G1
[2 + e21(3− 5 cos(2g1))] (43)

+
1
G2

[4 + 6e21 + (5 cos2 itot − 3)× (2

+ e21[3− 5 cos(2g1)])

}
.

In many system it is useful to calculate the time evolution of
the orbital elements, the eccentricity, through the following
relation:

dej
dt

=
∂ej
∂Gj

∂H
∂gi

. (44)

In the quadrupole approximation ė2 = 0 (which is not the
case for higher expansion of the Hamiltonian). The eccen-
tricity of the inner orbit is than simply:

ė1 = 4C2
1− e21
G1

[20e1 sin
2 itot sin(2g1)] . (45)

5 CONCLUSIONS

We showed that the prevision Kozai formalism, doesn’t not
conserve angular momentum. This was due to an error in
the implementation of Hamiltonian mechanics. Correcting
the formalism we find that the z-component angular mo-
mentum changes with time. The usual conception of a con-
servation of the z-component angular momentum hold only
as long as the outer perturber carries most if the angular
momentum of the system (G2/G1 ∼> 104). Fig 1 shows that
even small error can grow during the Kozai evolution. Since
in the Hamiltonian frame of work the equation of motions
achieved by making the derivatives separately for each co-
ordinates and momenta the final equations are the same.
Although the ġ1 equation has the factor G2 which is dif-
ferent from the usual equations CITE but often appear in
the octupole approximation Ford et al. (e.g., 2000) We note
that Farago & Laskar (2010) had a general vector based for-
malism for the quadruple approximation that in essentially
(although not mention there) dose not have an explicit as-
sumption of z-component angular momentum conservation.
The Kozai mechanism is vastly used in vastly used in triple
system dynamics such as planet formation, black hole evo-
lution etc. The use of the former formalism, not in the right
limit, can lead to misleading and wrong results.

M1 = 1 M⊙
M3 = 1 MJ

M3 = 4 MJ

a1 = 5 AU
a2 = 51 AU

ACKNOWLEDGMENTS

REFERENCES

Farago F., Laskar J., 2010, MNRAS, 401, 1189

c⃝ 0000 RAS, MNRAS 000, 000–000

4

+ 30e21 cos(2g1) sin
2(i1)

)
+ 3 cos(2∆h)[10e21 cos(2g1)

× (3 + cos(2i2)) + (2 + 3e21)4 sin(i1)
2] sin(i2)

2

+ 12(2 + 3e21 − 5e21 cos(2g1)) cos(∆h) sin(2i2) sin(2i2)

+ 120e21 sin(i1) sin(2i2) sin(2g1) sin(∆h)

− 120e21 cos(i1) sin(i2)
2 sin(21) sin(2∆h)} ,

where

C2 =
k4

4

(m0 +m1)
7

(m0 +m1 +m2)3
m7

2

(m0m1)3
L4

1

L3
2G

3
2

, (35)

Note that the factor 4 difference between our C2 and Ford
et al. (2000) is because of difference definitions Will we
can change it later, now I just want to be consistent
with our Mathmatica files

In the limiting case where G2 >> G1, i2 → 0 we get
the former Hamiltonian:

H2(G2 >> G1) =
C2

4

(
2 + 3e21 − 3 sin i2tot[5e

2
1 sin g

2
1 + 1− e21]

)
.(36)

4.2 Equation of motion

In the former formalism the Hamiltonian was not de-
pended on the longitude of ascending nodes, and thus the
z-component angular momenta were constant. However, cor-
recting that we have also evolution ofH1 andH2, which from
eq. (15) are related to the time derivative of G1 by1
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and Ġ1 = ∂H/∂g1. The latter is a known solution:
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ġ1 =
2C2

3

{
1
G1

[4 cos2 itot + (5 cos(2g1)− 1) (42)

1 Note that in the quadrupole approximation the Hamiltonian
is not defendant on g2, thus the magnitude of the outer orbit
angular momentum G2 is constant

× (1− e21 − cos2 itot)] +
cos itot
G2

[2

+ e21(3− 5 cos(2g1))]

}
,

and
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Question 

Why high inclination >40o? 
Is high inclination required also in the EKL 
mechanism? 
  What about chaos? 
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Q: Why  40 - 140 degrees limits? 
The Astrophysical Journal, 742:94 (8pp), 2011 December 1 Lithwick & Naoz

Figure 1. SKM (ϵ = 0): the three left panels show trajectories with Jz = 0.2
and various values of F. Trajectories with the same Jz overlap in the e–θ
plane (bottom panel); we have slightly offset these for clarity. The right panels
show the same, but with Jz = 0.6. For circulating trajectories, the minimum
e and θ occur at ω = 0. The dashed horizontal lines show the cosine of the
critical Kozai inclination,

√
3/5. The separatrix—which separates circulating

from librating trajectories—always has e0 = 0 and |θπ/2| =
√

3/5. The colored
curves have values of F as labeled; the black curves have the following values
of F: {−1.44,−.64} (left panels, librating); {1, 1.44} (left panels, circulating);
0.25 (right panels, librating); and {.64, 1} (right panels, circulating).
(A color version of this figure is available in the online journal.)

3. THE STANDARD KOZAI MECHANISM (ϵ = 0)

We review the SKM to set the stage for the EKM. For the
SKM, the planet’s orbit is circular (ϵ = 0, i.e., F = Fqu). Hence
there are two constants of the motion, F and Jz, and the motion
is regular. Each trajectory may be labeled by the values of F
and Jz. Inserting Equation (3) into Equation (10) immediately
determines e as a function of ω as well as θ as a function of ω.
The three left panels of Figure 1 show sample trajectories, with
fixed Jz = 0.2 and various values of F; the right panels show the
same, but with Jz = 0.4. For our purposes, the most important
properties of the SKM are as follows.

1. Because Jz = constant, each trajectory traces out a curve
in the e–θ plane, which we call a “Kozai curve.”

2. There are two classes of trajectories, librating and circu-
lating. On circulating trajectories, e and |θ | are smallest at
ω = 0, and they are largest at ω = ±π/2. The separatrix
has e0 ≡ e|ω=0 = 0 5 and |θ±π/2| =

√
3/5.

3. On a trajectory that has e0 ≪ 1, the largest e is

e2
±π/2 ≈ 1 − 5

3
θ2

0 ≈ 1 − 5
3
J 2

z (12)

to leading order in e2
0, when |θ0| <

√
3/5. (The cor-

responding inclinations are the critical Kozai angles
cos−1 ±

√
3/5 = 39◦ and 141◦.) Therefore when |θ0| ≪ 1

5 Throughout this paper, we denote values at ω = 0 with subscript “0.”

Figure 2. SKM (ϵ = 0): the left panel shows “Kozai curves,” i.e., trajectories
in the e–θ plane. The Kozai curves shown have F = 0.16 and Jz =
0.4, 0.3, . . . , −0.4. The leftmost tips of the Kozai curves (with coordinates
{e0, θ0}) trace out another curve, which we call the “energy curve.” That
energy curve is shown in green in the right panel; it is the level curve of
Fqu,0 ≡ Fqu|ω=0 = 0.16. The right panel also shows some other energy curves.
These intersect the θ0 axis at

√
Fqu,0 and the e0 axis at

√
Fqu,0/2.

(A color version of this figure is available in the online journal.)

(i.e., inclination close to 90◦), the largest eccentricity is
nearly unity.

4. Given F and Jz, the minimal e on a circulating trajectory
satisfies

e2
0 = 1

2

(
F − J 2

z

)
. (13)

Figure 2, left panel, shows a sequence of Kozai curves that
have the same value of F (= 0.16) and differing Jz. The left
boundaries of the sequence (i.e., the values {e0, θ0} for each
Kozai curve) trace out a curve in the e–θ plane, which we call an
“energy curve.” That curve is plotted in green in the right panel
of Figure 2. An energy curve is a curve of constant Fqu|ω=0. Its
form is given by Equation (13) with J 2

z = e2
0(1 − θ2

0 ). The right
panel of Figure 2 also shows other energy curves with different
energies Fqu.

4. THE ECCENTRIC KOZAI MECHANISM (ϵ > 0)

When the planet is eccentric (ϵ > 0) there is only a single
conserved quantity, the secular energy F. Therefore the particle’s
trajectories are more complicated and can even be chaotic.
Figure 3 shows two sample trajectories in the e–θ plane for
ϵ = 0.01. Both trajectories have the same energy F = 0.16, but
different initial conditions consistent with that energy. Rather
than being confined to a single Kozai curve, the particle evolves
from one Kozai curve to another. As long as ϵ ≪ 1, all of
these Kozai curves have nearly the same Fqu, and therefore the
trajectories in Figure 3 follow along the tracks displayed in the
left panel of Figure 2.

Trajectory ‘a’ in Figure 3 evolves through θ = 0. Its orbit
flips from prograde (θ > 0) to retrograde (θ < 0) and back
again. Furthermore, its eccentricity approaches unity. In fact,
the flipping of an orbit is closely tied to its eccentricity reaching
unity. This can be seen from Equation (12), which implies that
a Kozai curve that has θ0 ≈ 0 reaches e ≈ 1. (It never reaches
exactly e = 1; see below.) Trajectory ‘b’ never flips, and its
eccentricity does not approach unity.

The left panels of Figure 4 show the temporal evolution of θ
and e for trajectory ‘a.’ The bottom left panel shows two angles
that appear as arguments of cosine terms in Foc. When the
particle’s orbit is prograde, the angle ω + Ω librates and ω − Ω
circulates; and when it is retrograde, those two angles switch
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Q: Is the  40 - 140 degrees limits hold? 

Figure 2: Left panel: Illustration of the concept of ”surface section” for the J � !
plane. By recording the point in the trajectory every time ⌦ = 0, ⌦̇ > 0, the
trajectory can be present by a 2 dimensional graph, as shown in the left panel. This
set of points form the ”surface of section”. Right panel: Illustration of the resonant
and chaotic regions in surface of section. We set H = �0.1, ✏ = 0.1 in this plot. The
resonant and higher order resonant zones are marked by the red and the green arrow.
The chaotic zones are indicated by the grey arrow. In the resonant region, the angle
! is constrained in a small region and the position of the points are regular. In the
chaotic region, the position of the points are not regular.

cos 3! ± ⌦. Moreover, chaotic regions can be seen for high ✏ at H = �0.5 and
H = �0.1, where the chaotic zones are a result of the overlap of the resonances. As
J =

p
1� e21, J ! 0 corresponds to e1 ! 1. We find that e1 may be excited to high

values for almost all energy levels and are excited for higher ✏.
Similarly, for the surface section on the plane of Jz � ⌦, we notice that the

maximum/minimum energy it can reach in the Jz � ⌦ (with ! = 0) plane is ⇠ 0/⇠
�2.4. Thus, we plot the surface of section ranging from H = �2 to H = �0.1 for two
values of ✏ = 0.001 and 0.1. We find resonances at ⌦ = ⇡ and ⌦ = 0. In addition,
similar to the surface section on the J � ! plane, we see higher order resonances for
✏ = 0.1 at H = �0.3 and H = �0.1 embedded in the chaotic region, and the chaotic
region can only be seen for �0.5 . H . 0. Furthermore, Jz indicates the flip of the
orbit by changing sign. Reading from the surface of section, the orbit may flip for all
energy levels for di↵erent trajectories regions, and the flip parameter space is larger
for higher ✏. The corresponding e1 and i1 on the surface are shown in figure 10 and
figure 11.

The surface of sections show that flips and the excitation of e1 can occur for both
regular regions and chaotic regions for a wide range of H, and they depend sensitively
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Focusing on nearly coplanar configurations (i<10o), we show that for sufficiently large 
inner orbit eccentricities (≥0.6), the inner orbital inclination exhibits extreme ~180 o flips. 
In this case, the Kozai-Lidov resonance disappears, and large variations do not exist at 
the quadrupole approximation17. Nevertheless, the octupole order effects cause the inner 
orbit to flip by rolling over its major axis. This behavior indicates an interesting channel 
through which an inner planet flips over to a coplanar counter-orbiting configuration (see 
figure 2A). We demonstrate this process with N-body integration and explain the results 
with the octupole approximation (figure S1). 

 

 
 

Fig. 2. The evolution of the inner orbit’s eccentricity and mutual inclination. We set 
the mass of the star and the inner planet, m1 and mJ to a solar and a Jupiter mass, and the 
mass of the outer perturber m2 to 0.3M


, and ω1 = 0o, Ω1 = 180o, e2=0.6, a1 = 4 AU, a2 = 

50 AU. We use the secular approximation to calculate the dynamical evolution of point 
masses. Panel A shows the standard Kozai cycles for comparison, (e1 = 0.01, i = 65o), and 
panel B shows the eccentric coplanar scenario (e1 = 0.8, i = 5o). For the former, both i and 
e1 oscillate with large amplitudes, but in the eccentric coplanar case, e1 increases steadily 
and i oscillates to maintain a coplanar configuration. The flip occurs much more rapidly 
in the eccentric coplanar case.  

 

We find that the initially eccentric coplanar case is qualitatively different from the 
standard Kozai effect. Specifically, in the initially coplanar case, the oscillation amplitude 
of the inclination is small maintaining a coplanar configuration before the flip, as the 
eccentricity grows monotonically to large values. The timescale for the inclination to 
cross over 90o (flip timescale) is much shorter.  

The coplanar ~180o flip plays an important role in the obliquity evolution of many 
exoplanetary systems. During the orbital flip, the orbits become radial (e11). This 
reduces the pericenter distance, and allows tides to operate. Tidal dissipation forces the 
orbit to decay and to circularize to form a counter-orbiting hot Jupiter18 (see figure 3, 
bottom panel). The method we adopt to calculate the influence of the tide is explained in 
SI. In the example shown in figure 3, the orbit flips within 10Myr from ~ 6o to ~170o and 

A: No

ω1 = 0
°,Ω1 = 180

°,
e2 = 0.6,a1 = 4AU,a2 = 50AU
e1 = 0.8,i = 5

°

m1 = 1M,m2 = 1MJ ,m3 = 0.3M

condition: eccentric inner and outer orbits
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Figure 6. EKM, ϵ = 0.01. Zoom-in of 1− e for trajectory ‘a’ of Figures 3–5 up
to t = 750. The points are separated in time by ∆t = 10−4. Near the time that
the inclination flips from retrograde to prograde or vice versa, the eccentricity
reaches nearly unity and appears as a spike in this figure. The 10 spikes here
show the eccentricity during the first 10 flips. For this trajectory, the typical
maximum e near a flip is e ∼ 1–(5 × 10−6); in the third flip the eccentricity
reaches 1–(1.2 × 10−7).
(A color version of this figure is available in the online journal.)

Figure 7. EKM, ϵ = 0.01. Surfaces of section with various values of F; points
are plotted whenever ω = 2nπ for integer n. For each F, if the values of θ0
were plotted against the value of e0, they would lie along an energy curve
(Figure 2, right panel). The colors in that figure correspond to the colors in this
one. Consider for example the F = 0.16 panels (green points). If one imagines
extending the green F = 0.16 energy curve in Figure 2 out of the plane of the
paper into a half-cylinder, with the third dimension being the value of Ω, then
the green points shown in this figure would cover the surface of that cylinder.
(A color version of this figure is available in the online journal.)

ω = 2nπ that trajectory hits the green energy curve depicted in
the right panel of Figure 2. At those times, we plot in Figure 7
the value of e = e0 versus Ω and θ = θ0 versus Ω (curves
labeled ‘a,’ middle panels). Also shown in those green middle
panels are other trajectories with the same energy F = 0.16,
including trajectory ‘b.’ If all of the green points were plotted
against each other in the e0–θ0 plane, they would trace out the
energy curve labeled 0.16 in Figure 2. Equivalently, one can
imagine extending that energy curve out of the plane of the
paper into a half-cylinder, with the third dimension being the
value of Ω. The F = 0.16 surfaces of section of Figure 7 cover
the surface of that half-cylinder. Of course, for a given energy,

Figure 8. First flipping orbit. Each curve marks the first flipping orbit that can
occur for a given value of ϵ. Above each curve (i.e., at low inclination) none
of the orbits flip and below it some do. To make these curves, we numerically
integrated Equations (4)–(7) initialized with θ = 0 and ω = 0, scanning through
values of initial e and Ω to determine which flipping orbit reached the largest
values of θ0 for a given initial e. We then plotted the extreme values of e0 and
θ0 for that orbit.

the maximum |θ0| is
√

F and the maximum e0 is
√

F/2. Beyond
those values, the energy curve does not exist (see the caption of
Figure 2).

The other panels in Figure 7 may be interpreted similarly with
each pair of panels at fixed F lying along a single energy curve
of Figure 2 (with corresponding colors). We therefore now have
a virtually complete view of the ϵ = 0.01 dynamics.

One new behavior caused by the octupole term is the
appearance of chaos. Regular orbits appear as curves in the
surfaces of section, while chaotic orbits appear as a smattering of
points. For example, it is apparent from Figure 7 that trajectory
‘a’ is regular and ‘b’ is chaotic. Chaos always occurs near
e0 = 0. That is because the Kozai separatrix always has e0 = 0
(Section 3), and chaos is caused by the crossing of the Kozai
separatrix, when ω transitions from librating to circulating and
back to librating (e.g., Figure 5).

Perhaps the most dramatic new behavior caused by the
octupole term is that orbits can flip orientation (i.e., cross
θ = 0), and, as a consequence, reach arbitrarily high values
of eccentricity. From the top panels of Figure 7, it is clear which
orbits exhibit this behavior, and which do not, at ϵ = 0.01. In
particular, any curve that crosses θ0 = 0 is a regular orbit that
flips, and any smattering of points that straddle the θ0 = 0 line
is a chaotic orbit that flips. If one makes the correspondence
between the orbits in the top panels and those in the bottom,
one infers that orbits with e0 = 0 will always flip provided that
|θ0| ! 0.2 (i.e., i0 " cos−1 0.2 ∼ 80◦ for prograde orbits).
For e0 ̸= 0, one infers from the blue (F = 0.25) panels
that even orbits with θ0 as large as 0.4 (i0 as small as 66◦)
can flip.

Figure 8 is the main result of this paper. It summarizes where
flipping orbits occur for various values of ϵ. Toward the top
of the plot (large θ0 and small i0), there are no flipping orbits.
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Maximum eccentricity and initial conditions 

of approximation causes large eccentricity excitation since larger ✏ implies that the
octupole level is more dominant.
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Figure 3: The surface of section in the J �! plane. In the first row, ✏ = 0.001 and in
the second row, ✏ = 0.1. The octupole terms are more dominated when ✏ is bigger.
H varies from �2 ⇠ 1. The corresponding e1 and i in this plane is shown in Figure
10 and 11. There are chaotic regions at H = �0.5 and H = �0.1.

Next, we study the surface section in the plane of Jz � ⌦. The maximum and
minimum energy that can be reached in the Jz � ⌦ (with ! = 0) plane is ⇠ 0 and
⇠ �2.4. Thus, we plot the surface of section ranging from H = �2 to H = �0.1 for
two values of ✏ = 0.001 and 0.1. At quadrupole level, Jz is constant, and there’s no
resonances in the Jz�⌦ plane. Thus, all the resonances originated from the octupole
level of approximation, and the fixed points are at ⌦ = ⇡ and ⌦ = 0. In addition,
similar to the surface section on the J � ! plane, we see higher order resonances for
✏ = 0.1 at H = �0.3 and H = �0.1 embedded in the chaotic region, and the chaotic
region is confined to �0.5 . H . 0. As Jz changes sign, the orbit flips. Thus as
depicted in Figure 4, the orbit may flip for all energy levels, and the flip parameter
space is larger for higher ✏. The corresponding e1 and i on the surface are shown in
figure 12 and figure 13.

To summarize, the surface of sections show that flips and the excitation of e1 can
occur for both regular regions and chaotic regions for a wide range of H, and they
depend sensitively on the initial condition. In addition, the trajectories are chaotic
only when H . 0, corresponding to high mutual inclination low eccentricity cases.
Furthermore, it is the octupole resonances that cause the flip of the orbit and the
excitation of eccentricity very close to unity.
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TO FLIP OR NOT TO FLIP?
EXPLORING THE PARAMETER SPACE OF RETROGRADE PLANETS IN THE SECULAR HIERARCHICAL 3-BODY PROBLEM

Jean Teyssandier, Smadar Naoz, Fred Rasio, Yoram Lithwick and Will Farr

CIERA, Northwestern University, Evanston, IL 60208, USA

credit: Lynette Cook

ABSTRACT

Recent observations using the Rossiter-McLaughlin effect have revealed the existence of Hot Jupiters in highly inclined
and even retrograde orbits. At the same time, distant planets have been discovered using direct imaging methods. Moti-
vated by these observations, we explore the possibility of forming retrograde orbits in hierarchical triple configurations
with two giant planets, or one giant planet and a brown-dwarf binary companion. We survey a large set of orbital pa-
rameters, highlighting the range of initial conditions that allow for the formation of retrograde Hot Jupiters. We use the
formalism developed in Naoz et al. (2011b), which gives a correct treatment of the secular evolution of hierarchical triple
systems to octupole order. With this new formalism, a complete numerical study can be done. Based on our new survey,
we show how and when an eccentric planetary or brown-dwarf companion can perturb the inner planet into a retrograde
orbit, as long as the mutual inclination is high. Constraints on the outer body can be used to guide future observations.

MOTIVATIONS
A significant number of Hot-Jupiters

are observed to be misaligned and even

in retrograde motion with respect to

the spin axis of the host star, through

measurement of the spin angle via

the Rossiter-McLaughlin effect (Triaud

et al., 2010). In our model, first pre-

sented in Naoz et al. (2011a), we study

the perturbation of a Jupiter-mass

planet by a far-distant outer body.

SECULAR DYNAMICS

We use the hamiltonian of the hier-

archical three-body problem and de-

velop it to the second order, called

the octupole order. We average over

one period of each orbit and thus,

only remains the secular part of the

hamiltonian.

H = Hquad+ϵMHoct

with

ϵM = α

m0−m1

m0+m1

e2

1− e22
.

We compare with a N-body simulation (Naoz et al., 2011b):
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Comparison between the secular equations at octupole order

(red curve) and a direct N-body integration using themercury

package (blue curve). The system has m1 = 1M⊙, m2 = 1MJ,

m3 = 40MJ, a1 = 6AU, a2 = 100AU, e1 = 0.01 and e2 = 0.6,

i tot = 65◦. In both case the evolution of the inclination is very

similar, with flips from prograde to retrograde orbits.

PARAMETER SPACE

For all the following figures, we plot the ratio of time spent in a retrograde orbit, over an integration time of 8Gy. In every run we take all the

parameters to be fixed but two. These two free parameters vary with a regular stepsize, which gives a range of initial conditions regularly spaced

in two directions of the space of parameters, and fixed in all the other directions. For all systems, the central body is a 1M⊙ star. We define

α= a1/a2.
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The system is such as m2 = 1MJ and m3 = 6MJ. The initial mu-

tual inclination is 65◦. α varies from 0.025 to 0.1., and e2 from 0.1

to 0.8. High eccentricities and high α (i.e., high ϵM) produce more

retrograde orbits. The black line give the gravitational instability

limit. Everything above this limit is likely to be unstable.
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The perturber is such as e2 = 0.6. The initial mutual inclination

is 65◦. A close massive perturber (i.e. a strong perturbative po-

tential) produces more flips of the inner planet.

COMPARISON WITH A TEST PARTICLE

Similar Masss Case
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The system is such as m2= 1MJ and m3= 6MJ with e2= 0.5. The

initial mutual inclination varies from 35◦ to 90◦, while α varies

from 0.025 to 0.1. In order to produce a retrograde orbit, the

initial inclination must be in [55◦ : 80◦] for most α. Small α (i.e.

distant companions) do not allow for a flip.

Test Particle Case
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The system has e2 = 0.5. The inner mass is zero, and m3/m1 =

6e−3 The initial mutual inclination varies from 35◦ to 90◦, while

α varies from 0.025 to 0.1. In the test particle case, there is no

decreasing of the ratio for very high initial inclinations (Lithwick

& Naoz, 2011; Katz et al., 2011).

REFERENCES

Katz, B., Dong, S., & Malhotra, R. 2011, ArXiv e-prints 1106.3340

Lithwick, Y., & Naoz, S. 2011, ArXiv e-prints 1106.3329

Naoz, S., Farr, W. M., Lithwick, Y., Rasio, F. A., & Teyssandier, J. 2011a,

Nature, 473, 187

—. 2011b, ArXiv e-prints 1107.2414

Teyssandier, J., Naoz, S., Farr, W. M., Lithwick, Y., Lizarraga, Y., & Rasio,

F. A. a. 2011, in Prep.

Triaud, A. H. M. J., et al. 2010, A& A, 524

CONCLUSIONS

• In the test particle limit, the probability distribution for the sys-

tem to be retrograde is different than in the comparable masses

case. Mainly, the gap observed at very high inclinations in the

latter is filled in the first case.

• Results from this work predict various configurations of triple

systems and thus give motivation for direct imaging: : the best

configurations for flipping the orbit would be a1/a2 ∈ [0.1,0.05],

m2/m3< 0.5, e2 > 0.3 (Teyssandier et al., 2011).

• Preliminary studies including tidal friction showed that this

configurations indeed produce retrograde Hot-Jupiters.

Ian Lizarraga
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Figure 9. Example illustrating a tidal disruption event. The initial condition
is the same as in Figure 7, except a1 = 39 AU. Similar to Figure 7, both
tidal dissipation and general relativity precession effects are included (see text).
During the flip, e1 ∼ 1 and the tidal dissipation forces the orbit to decay (as
shown in the bottom panel). However, the tidal circularization is outrun by the
eccentricity excitation during the flip, and the object is disrupted before reaching
180◦ when rp < rL, where rL is the Roche limit of the object to m1.
(A color version of this figure is available in the online journal.)
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Figure 10. Maximum eccentricity. The maximum eccentricity reached during
the secular evolution in time 3tKozai (upper left panel), 5tKozai (upper right panel),
10 tKozai (lower left panel), and 30 tKozai (lower right panel) as a function of the
initial eccentricity (horizontal axis) and inclination (vertical axis). Tides are not
included in the simulation. The initial conditions of the runs are m1 = 1 M⊙,
m2 = 0.1 M⊙, a1 = 1 AU, a2 = 45.7 AU, e2 = 0.7, ω1 = 0◦, and
Ω1 = 180◦. The typical eccentricity reached at the first flip is ∼1–10−4, and the
eccentricity may increase to ∼1–10−6 after several flips. The HiLe case reaches
the maximum eccentricity later than the LiHe case. The inner orbit flips above
the black solid lines.
(A color version of this figure is available in the online journal.)

A very large eccentricity does not immediately imply a tidal
dissipation event, since this depends on the initial separation of
the orbit. We map the maximum eccentricity that can be reached
during the evolution, which may then be useful to examine the
likelihood of tidal disruption for specific systems.

Specifically, we study the maximum eccentricity reached
during the evolution for ϵ = 0.03. Since this depends on the
time the integration stops, we record the respective maximum
eccentricity of the inner orbit for integration times 3tKozai,
5 tKozai, 10 tKozai, and 30 tKozai. As shown in Figure 10, the
eccentricity of the inner orbit can be very close to 1, with

1 − e1,max ∼ 10−4 during the first flip, and 10−6 over longer
time periods.

This process is relevant for estimating the rates of planet–star
collisions (Hellier et al. 2009; Bear et al. 2011), stellar tidal
disruptions due to black hole binaries (Ivanov et al. 2005; Colpi
& Dotti 2011; Chen et al. 2011; Wegg & Bode 2011; Bode
& Wegg 2013; Stone & Loeb 2012; G. Li et al. 2014b, in
preparation), Type 1a supernovae (Katz & Dong 2012), star–star
collisions (e.g., Perets & Fabrycky 2009; Thompson 2011;
Katz & Dong 2012; Shappee & Thompson 2013; Naoz et al.
2013a; Naoz & Fabrycky 2014), and gravitational wave sources
(O’Leary et al. 2009; Kocsis & Levin 2012).

5. CONCLUSION

We have presented a new mechanism that flips an eccentric
inner orbit by 180◦ starting with a near-coplanar configuration
in a hierarchical three-body system with an eccentric outer per-
turber. We use the secular approximation to study the dynamics,
and show the agreement between the secular treatment and the
N-body simulation in Figure 2.

The HeLi flip is a different mechanism from the LeHi
flip discussed by Naoz et al. (2011, 2013a). The underlying
resonances causing the large oscillation in the inclination and
the flip are different: the LeHi flip is caused by both the
quadrupole and the octupole interactions. However, in the HeLi
case, only octupole resonances are in play (see G. Li et al. 2014a,
in preparation for further discussion). Moreover, for the low
inclination case, the orbital evolution is regular, which admits a
simple analytic flip criterion and timescale (which were shown
to agree with the numerical results in Figure 5). Specifically,
the flip criterion is shown in Equation (14). In addition, the
difference can be seen through the evolution of the orbit: the
eccentricity increases monotonically and the inclination remains
low before the flip, and the flip timescale of the coplanar case
is shorter compared with the high inclination case (see Figure 3
and movies). Finally, we explored the entire e1 and i0 parameter
space, including both the high inclination and low inclination
flips. We studied the flip condition for the initial condition in
Figure 6. The evolution of the near-coplanar systems is distinct
from the exact coplanar systems, because in the exact coplanar
systems the net force normal to the orbital plane is zero and
thus the orbit cannot flip. Therefore, the N-body simulations that
assume exactly zero inclination may miss some of the dynamical
behavior arises, even for small deviations from coplanarity.

Observations of the sky-projected obliquity angle of hot
Jupiters shows that their orbital orientation ranges from almost
perfectly aligned to almost perfectly anti-aligned with respect
to the spin of the star (Albrecht et al. 2012). We showed
in the hierarchal, nearly coplanar, three-body framework an
initial eccentric inner orbit can flip its orientation by almost
180◦ in the presence of an eccentric companion (Figures 5
and 6). During the planet’s evolution, its eccentricity is increased
monotonically, and thus tides are able to shrink and circularize
the orbit. If the planet has flipped by ∼180◦ before the tidal
evolution dominates, a counter-orbiting close-in planet can be
formed.

Figure 7 demonstrated this behavior. Not only does the fi-
nal planet inclination reach 180◦ with respect to the total an-
gular momentum, but also the obliquity. This is because the
timescale to torque the spin of the star is much longer than the
orbital flip timescale, the spin–orbit angle is similar to the incli-
nation at ∼180◦. Therefore, starting with an initially aligned
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eccentricity may increase to ∼1–10−6 after several flips. The HiLe case reaches
the maximum eccentricity later than the LiHe case. The inner orbit flips above
the black solid lines.
(A color version of this figure is available in the online journal.)

A very large eccentricity does not immediately imply a tidal
dissipation event, since this depends on the initial separation of
the orbit. We map the maximum eccentricity that can be reached
during the evolution, which may then be useful to examine the
likelihood of tidal disruption for specific systems.

Specifically, we study the maximum eccentricity reached
during the evolution for ϵ = 0.03. Since this depends on the
time the integration stops, we record the respective maximum
eccentricity of the inner orbit for integration times 3tKozai,
5 tKozai, 10 tKozai, and 30 tKozai. As shown in Figure 10, the
eccentricity of the inner orbit can be very close to 1, with

1 − e1,max ∼ 10−4 during the first flip, and 10−6 over longer
time periods.

This process is relevant for estimating the rates of planet–star
collisions (Hellier et al. 2009; Bear et al. 2011), stellar tidal
disruptions due to black hole binaries (Ivanov et al. 2005; Colpi
& Dotti 2011; Chen et al. 2011; Wegg & Bode 2011; Bode
& Wegg 2013; Stone & Loeb 2012; G. Li et al. 2014b, in
preparation), Type 1a supernovae (Katz & Dong 2012), star–star
collisions (e.g., Perets & Fabrycky 2009; Thompson 2011;
Katz & Dong 2012; Shappee & Thompson 2013; Naoz et al.
2013a; Naoz & Fabrycky 2014), and gravitational wave sources
(O’Leary et al. 2009; Kocsis & Levin 2012).

5. CONCLUSION

We have presented a new mechanism that flips an eccentric
inner orbit by 180◦ starting with a near-coplanar configuration
in a hierarchical three-body system with an eccentric outer per-
turber. We use the secular approximation to study the dynamics,
and show the agreement between the secular treatment and the
N-body simulation in Figure 2.

The HeLi flip is a different mechanism from the LeHi
flip discussed by Naoz et al. (2011, 2013a). The underlying
resonances causing the large oscillation in the inclination and
the flip are different: the LeHi flip is caused by both the
quadrupole and the octupole interactions. However, in the HeLi
case, only octupole resonances are in play (see G. Li et al. 2014a,
in preparation for further discussion). Moreover, for the low
inclination case, the orbital evolution is regular, which admits a
simple analytic flip criterion and timescale (which were shown
to agree with the numerical results in Figure 5). Specifically,
the flip criterion is shown in Equation (14). In addition, the
difference can be seen through the evolution of the orbit: the
eccentricity increases monotonically and the inclination remains
low before the flip, and the flip timescale of the coplanar case
is shorter compared with the high inclination case (see Figure 3
and movies). Finally, we explored the entire e1 and i0 parameter
space, including both the high inclination and low inclination
flips. We studied the flip condition for the initial condition in
Figure 6. The evolution of the near-coplanar systems is distinct
from the exact coplanar systems, because in the exact coplanar
systems the net force normal to the orbital plane is zero and
thus the orbit cannot flip. Therefore, the N-body simulations that
assume exactly zero inclination may miss some of the dynamical
behavior arises, even for small deviations from coplanarity.

Observations of the sky-projected obliquity angle of hot
Jupiters shows that their orbital orientation ranges from almost
perfectly aligned to almost perfectly anti-aligned with respect
to the spin of the star (Albrecht et al. 2012). We showed
in the hierarchal, nearly coplanar, three-body framework an
initial eccentric inner orbit can flip its orientation by almost
180◦ in the presence of an eccentric companion (Figures 5
and 6). During the planet’s evolution, its eccentricity is increased
monotonically, and thus tides are able to shrink and circularize
the orbit. If the planet has flipped by ∼180◦ before the tidal
evolution dominates, a counter-orbiting close-in planet can be
formed.

Figure 7 demonstrated this behavior. Not only does the fi-
nal planet inclination reach 180◦ with respect to the total an-
gular momentum, but also the obliquity. This is because the
timescale to torque the spin of the star is much longer than the
orbital flip timescale, the spin–orbit angle is similar to the incli-
nation at ∼180◦. Therefore, starting with an initially aligned
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eccentricity may increase to ∼1–10−6 after several flips. The HiLe case reaches
the maximum eccentricity later than the LiHe case. The inner orbit flips above
the black solid lines.
(A color version of this figure is available in the online journal.)

A very large eccentricity does not immediately imply a tidal
dissipation event, since this depends on the initial separation of
the orbit. We map the maximum eccentricity that can be reached
during the evolution, which may then be useful to examine the
likelihood of tidal disruption for specific systems.

Specifically, we study the maximum eccentricity reached
during the evolution for ϵ = 0.03. Since this depends on the
time the integration stops, we record the respective maximum
eccentricity of the inner orbit for integration times 3tKozai,
5 tKozai, 10 tKozai, and 30 tKozai. As shown in Figure 10, the
eccentricity of the inner orbit can be very close to 1, with

1 − e1,max ∼ 10−4 during the first flip, and 10−6 over longer
time periods.

This process is relevant for estimating the rates of planet–star
collisions (Hellier et al. 2009; Bear et al. 2011), stellar tidal
disruptions due to black hole binaries (Ivanov et al. 2005; Colpi
& Dotti 2011; Chen et al. 2011; Wegg & Bode 2011; Bode
& Wegg 2013; Stone & Loeb 2012; G. Li et al. 2014b, in
preparation), Type 1a supernovae (Katz & Dong 2012), star–star
collisions (e.g., Perets & Fabrycky 2009; Thompson 2011;
Katz & Dong 2012; Shappee & Thompson 2013; Naoz et al.
2013a; Naoz & Fabrycky 2014), and gravitational wave sources
(O’Leary et al. 2009; Kocsis & Levin 2012).

5. CONCLUSION

We have presented a new mechanism that flips an eccentric
inner orbit by 180◦ starting with a near-coplanar configuration
in a hierarchical three-body system with an eccentric outer per-
turber. We use the secular approximation to study the dynamics,
and show the agreement between the secular treatment and the
N-body simulation in Figure 2.

The HeLi flip is a different mechanism from the LeHi
flip discussed by Naoz et al. (2011, 2013a). The underlying
resonances causing the large oscillation in the inclination and
the flip are different: the LeHi flip is caused by both the
quadrupole and the octupole interactions. However, in the HeLi
case, only octupole resonances are in play (see G. Li et al. 2014a,
in preparation for further discussion). Moreover, for the low
inclination case, the orbital evolution is regular, which admits a
simple analytic flip criterion and timescale (which were shown
to agree with the numerical results in Figure 5). Specifically,
the flip criterion is shown in Equation (14). In addition, the
difference can be seen through the evolution of the orbit: the
eccentricity increases monotonically and the inclination remains
low before the flip, and the flip timescale of the coplanar case
is shorter compared with the high inclination case (see Figure 3
and movies). Finally, we explored the entire e1 and i0 parameter
space, including both the high inclination and low inclination
flips. We studied the flip condition for the initial condition in
Figure 6. The evolution of the near-coplanar systems is distinct
from the exact coplanar systems, because in the exact coplanar
systems the net force normal to the orbital plane is zero and
thus the orbit cannot flip. Therefore, the N-body simulations that
assume exactly zero inclination may miss some of the dynamical
behavior arises, even for small deviations from coplanarity.

Observations of the sky-projected obliquity angle of hot
Jupiters shows that their orbital orientation ranges from almost
perfectly aligned to almost perfectly anti-aligned with respect
to the spin of the star (Albrecht et al. 2012). We showed
in the hierarchal, nearly coplanar, three-body framework an
initial eccentric inner orbit can flip its orientation by almost
180◦ in the presence of an eccentric companion (Figures 5
and 6). During the planet’s evolution, its eccentricity is increased
monotonically, and thus tides are able to shrink and circularize
the orbit. If the planet has flipped by ∼180◦ before the tidal
evolution dominates, a counter-orbiting close-in planet can be
formed.

Figure 7 demonstrated this behavior. Not only does the fi-
nal planet inclination reach 180◦ with respect to the total an-
gular momentum, but also the obliquity. This is because the
timescale to torque the spin of the star is much longer than the
orbital flip timescale, the spin–orbit angle is similar to the incli-
nation at ∼180◦. Therefore, starting with an initially aligned
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During the flip, e1 ∼ 1 and the tidal dissipation forces the orbit to decay (as
shown in the bottom panel). However, the tidal circularization is outrun by the
eccentricity excitation during the flip, and the object is disrupted before reaching
180◦ when rp < rL, where rL is the Roche limit of the object to m1.
(A color version of this figure is available in the online journal.)
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Ω1 = 180◦. The typical eccentricity reached at the first flip is ∼1–10−4, and the
eccentricity may increase to ∼1–10−6 after several flips. The HiLe case reaches
the maximum eccentricity later than the LiHe case. The inner orbit flips above
the black solid lines.
(A color version of this figure is available in the online journal.)

A very large eccentricity does not immediately imply a tidal
dissipation event, since this depends on the initial separation of
the orbit. We map the maximum eccentricity that can be reached
during the evolution, which may then be useful to examine the
likelihood of tidal disruption for specific systems.

Specifically, we study the maximum eccentricity reached
during the evolution for ϵ = 0.03. Since this depends on the
time the integration stops, we record the respective maximum
eccentricity of the inner orbit for integration times 3tKozai,
5 tKozai, 10 tKozai, and 30 tKozai. As shown in Figure 10, the
eccentricity of the inner orbit can be very close to 1, with

1 − e1,max ∼ 10−4 during the first flip, and 10−6 over longer
time periods.

This process is relevant for estimating the rates of planet–star
collisions (Hellier et al. 2009; Bear et al. 2011), stellar tidal
disruptions due to black hole binaries (Ivanov et al. 2005; Colpi
& Dotti 2011; Chen et al. 2011; Wegg & Bode 2011; Bode
& Wegg 2013; Stone & Loeb 2012; G. Li et al. 2014b, in
preparation), Type 1a supernovae (Katz & Dong 2012), star–star
collisions (e.g., Perets & Fabrycky 2009; Thompson 2011;
Katz & Dong 2012; Shappee & Thompson 2013; Naoz et al.
2013a; Naoz & Fabrycky 2014), and gravitational wave sources
(O’Leary et al. 2009; Kocsis & Levin 2012).

5. CONCLUSION

We have presented a new mechanism that flips an eccentric
inner orbit by 180◦ starting with a near-coplanar configuration
in a hierarchical three-body system with an eccentric outer per-
turber. We use the secular approximation to study the dynamics,
and show the agreement between the secular treatment and the
N-body simulation in Figure 2.

The HeLi flip is a different mechanism from the LeHi
flip discussed by Naoz et al. (2011, 2013a). The underlying
resonances causing the large oscillation in the inclination and
the flip are different: the LeHi flip is caused by both the
quadrupole and the octupole interactions. However, in the HeLi
case, only octupole resonances are in play (see G. Li et al. 2014a,
in preparation for further discussion). Moreover, for the low
inclination case, the orbital evolution is regular, which admits a
simple analytic flip criterion and timescale (which were shown
to agree with the numerical results in Figure 5). Specifically,
the flip criterion is shown in Equation (14). In addition, the
difference can be seen through the evolution of the orbit: the
eccentricity increases monotonically and the inclination remains
low before the flip, and the flip timescale of the coplanar case
is shorter compared with the high inclination case (see Figure 3
and movies). Finally, we explored the entire e1 and i0 parameter
space, including both the high inclination and low inclination
flips. We studied the flip condition for the initial condition in
Figure 6. The evolution of the near-coplanar systems is distinct
from the exact coplanar systems, because in the exact coplanar
systems the net force normal to the orbital plane is zero and
thus the orbit cannot flip. Therefore, the N-body simulations that
assume exactly zero inclination may miss some of the dynamical
behavior arises, even for small deviations from coplanarity.

Observations of the sky-projected obliquity angle of hot
Jupiters shows that their orbital orientation ranges from almost
perfectly aligned to almost perfectly anti-aligned with respect
to the spin of the star (Albrecht et al. 2012). We showed
in the hierarchal, nearly coplanar, three-body framework an
initial eccentric inner orbit can flip its orientation by almost
180◦ in the presence of an eccentric companion (Figures 5
and 6). During the planet’s evolution, its eccentricity is increased
monotonically, and thus tides are able to shrink and circularize
the orbit. If the planet has flipped by ∼180◦ before the tidal
evolution dominates, a counter-orbiting close-in planet can be
formed.

Figure 7 demonstrated this behavior. Not only does the fi-
nal planet inclination reach 180◦ with respect to the total an-
gular momentum, but also the obliquity. This is because the
timescale to torque the spin of the star is much longer than the
orbital flip timescale, the spin–orbit angle is similar to the incli-
nation at ∼180◦. Therefore, starting with an initially aligned
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is the same as in Figure 7, except a1 = 39 AU. Similar to Figure 7, both
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(A color version of this figure is available in the online journal.)
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Ω1 = 180◦. The typical eccentricity reached at the first flip is ∼1–10−4, and the
eccentricity may increase to ∼1–10−6 after several flips. The HiLe case reaches
the maximum eccentricity later than the LiHe case. The inner orbit flips above
the black solid lines.
(A color version of this figure is available in the online journal.)

A very large eccentricity does not immediately imply a tidal
dissipation event, since this depends on the initial separation of
the orbit. We map the maximum eccentricity that can be reached
during the evolution, which may then be useful to examine the
likelihood of tidal disruption for specific systems.

Specifically, we study the maximum eccentricity reached
during the evolution for ϵ = 0.03. Since this depends on the
time the integration stops, we record the respective maximum
eccentricity of the inner orbit for integration times 3tKozai,
5 tKozai, 10 tKozai, and 30 tKozai. As shown in Figure 10, the
eccentricity of the inner orbit can be very close to 1, with

1 − e1,max ∼ 10−4 during the first flip, and 10−6 over longer
time periods.

This process is relevant for estimating the rates of planet–star
collisions (Hellier et al. 2009; Bear et al. 2011), stellar tidal
disruptions due to black hole binaries (Ivanov et al. 2005; Colpi
& Dotti 2011; Chen et al. 2011; Wegg & Bode 2011; Bode
& Wegg 2013; Stone & Loeb 2012; G. Li et al. 2014b, in
preparation), Type 1a supernovae (Katz & Dong 2012), star–star
collisions (e.g., Perets & Fabrycky 2009; Thompson 2011;
Katz & Dong 2012; Shappee & Thompson 2013; Naoz et al.
2013a; Naoz & Fabrycky 2014), and gravitational wave sources
(O’Leary et al. 2009; Kocsis & Levin 2012).

5. CONCLUSION

We have presented a new mechanism that flips an eccentric
inner orbit by 180◦ starting with a near-coplanar configuration
in a hierarchical three-body system with an eccentric outer per-
turber. We use the secular approximation to study the dynamics,
and show the agreement between the secular treatment and the
N-body simulation in Figure 2.

The HeLi flip is a different mechanism from the LeHi
flip discussed by Naoz et al. (2011, 2013a). The underlying
resonances causing the large oscillation in the inclination and
the flip are different: the LeHi flip is caused by both the
quadrupole and the octupole interactions. However, in the HeLi
case, only octupole resonances are in play (see G. Li et al. 2014a,
in preparation for further discussion). Moreover, for the low
inclination case, the orbital evolution is regular, which admits a
simple analytic flip criterion and timescale (which were shown
to agree with the numerical results in Figure 5). Specifically,
the flip criterion is shown in Equation (14). In addition, the
difference can be seen through the evolution of the orbit: the
eccentricity increases monotonically and the inclination remains
low before the flip, and the flip timescale of the coplanar case
is shorter compared with the high inclination case (see Figure 3
and movies). Finally, we explored the entire e1 and i0 parameter
space, including both the high inclination and low inclination
flips. We studied the flip condition for the initial condition in
Figure 6. The evolution of the near-coplanar systems is distinct
from the exact coplanar systems, because in the exact coplanar
systems the net force normal to the orbital plane is zero and
thus the orbit cannot flip. Therefore, the N-body simulations that
assume exactly zero inclination may miss some of the dynamical
behavior arises, even for small deviations from coplanarity.

Observations of the sky-projected obliquity angle of hot
Jupiters shows that their orbital orientation ranges from almost
perfectly aligned to almost perfectly anti-aligned with respect
to the spin of the star (Albrecht et al. 2012). We showed
in the hierarchal, nearly coplanar, three-body framework an
initial eccentric inner orbit can flip its orientation by almost
180◦ in the presence of an eccentric companion (Figures 5
and 6). During the planet’s evolution, its eccentricity is increased
monotonically, and thus tides are able to shrink and circularize
the orbit. If the planet has flipped by ∼180◦ before the tidal
evolution dominates, a counter-orbiting close-in planet can be
formed.

Figure 7 demonstrated this behavior. Not only does the fi-
nal planet inclination reach 180◦ with respect to the total an-
gular momentum, but also the obliquity. This is because the
timescale to torque the spin of the star is much longer than the
orbital flip timescale, the spin–orbit angle is similar to the incli-
nation at ∼180◦. Therefore, starting with an initially aligned
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Figure 11. Maximum inner eccentricity (given as 1 − e1,max in logarithmic
scale) for the run in Figure 10. Very high eccentricities are associated with flips
of the inner orbit.
(A color version of this figure is available in the online journal.)

our integration time (8 Gyr) most of the runs already converged
(see Appendix A.2). Another interesting regime that arises from
the parameter maps is a “transition zone” where the inner planet
spends only about 10%–20% of its time on a retrograde orbit
(colored pale blue in the figures).

Also important are the behaviors of the inner and outer
orbits’ eccentricities. In Figure 11, we show the maximum e1
reached in the corresponding run of Figure 10, and in Figure 12
we show the (relative) maximum e2 for the same run. Not
surprisingly, the behavior closely resembles that of the test
particle approximation. The probability of flipping the orbits
matches the maximum value of e1: flips are associated with
excursions to very high eccentricities, which, in fact, happen just
before the flip. We find excursions of at least 1 − e1,max ! 10−4

when f ≃ 0.5. Furthermore, in our case, the outer orbit’s
angular momentum is changing too, as can be seen in Figure 12,
where we show the maximal relative value reached by the outer
eccentricity. This plot shows that the suppression of flips at high
initial mutual inclinations is highly related to the outer orbit’s
evolution. When the outer orbit’s eccentricity almost does not
change (marked in pale blue), the inner orbit is more likely to
flip.

These numerical results suggest that HJs that formed
through planet–planet secular interactions should have a massive
("3 MJ ), eccentric ("0.25) companion with a SMA between 50
and 100 AU and a mutual inclination between 55◦ and 85◦. A
planetary companion like this can drive a Jupiter-like planet in
5 AU to a large eccentricity, which in the presence of dissipation
can result in shrinking the orbit to form a HJ (see Naoz et al.
2011).

In Appendix A.1, we study the distribution of another variable
of interest, the maximum mutual inclination reached by the same
systems as the ones studied in this section. We show that systems
for which f > 0 all reach the same maximum inclination of
about 140◦, which is one of the critical Kozai angles.

3.2. Inner Orbit Eccentricity Distribution

As noted before, we focus on the dynamical evolution
and neglect dissipation throughout the paper. However, tidal
dissipation will become important when the inner planet reaches
very high eccentricities. Therefore, in this section, we focus

 40  50  60  70  80  90
initial mutual inclination

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

e 2

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

(e
2,

m
ax

-e
2,

0)
 / 

e 2
,0

Figure 12. Variation of the outer eccentricity e2 for the run in Figure 10. The
color scale shows (e2,max −e2,0)/e2,0, where e2,0 is the initial outer eccentricity.
This map indicates that the back reaction from the inner planet on the outer
planet is more important at high mutual inclination and low eccentricities.
(A color version of this figure is available in the online journal.)

specifically on the inner orbit’s eccentricity distribution for these
systems. In Figure 13, we show the cumulative distribution of the
inner orbit’s eccentricity for different outer orbit configurations.
Although a flip (itot > 90◦) happens when the inner orbit’s
eccentricity reaches a minimum, it also happens right after a
large-eccentricity peak (see Lithwick & Naoz 2011; Naoz et al.
2013a for discussion); thus, the large-eccentricity peaks are a
good proxy for a flip and vice versa (it is certainly the case for
the test particle scenario, as shown in Naoz et al. 2012, and we
show here that it remains true when this approximation breaks
down.)

As shown in Figure 13, a systematically low inner orbit
eccentricity excitation is achieved for a combination of one
or more of the following conditions for the outer orbit: low
mass, low eccentricity, large orbital separation, and low mutual
inclinations. However, for high mutual inclinations (#50◦),
high outer orbit eccentricities (#0.25), and a massive perturber
(#5 MJ ), the cumulative distribution is insensitive to the initial
conditions. For these cases, as soon as the octupole effects
are triggered, the inner eccentricity reaches extreme values
(e1 # 0.99). As a consequence, a counterplay may take place
between the nearly radial orbit, which drives the planet to the
star, and tidal dissipation, which can shrink and circularize the
planet’s orbit. As shown in Naoz et al. (2011), a fairly high
percentage of planets formed by this mechanism end up as HJs.

4. STATISTICAL ESTIMATION THROUGH A MONTE
CARLO EXPERIMENT

We explore the statistical properties of two representative
scenarios of systems that are not only significantly different
from the test particle approximation but also distinct from one
another. In the first scenario, we consider a perturber with a
mass of 2 MJ (comparable to that of the inner planet, 1 MJ) at
a2 = 61 AU. Such a system was shown in the previous section to
suppress the EKL behavior. In the second scenario, we consider
a system with a perturber with a mass of 6 MJ at a2 = 61 AU.
We showed that such a system can undergo large inclination
and eccentricity oscillations but still significantly differs from
the test particle approximation since the EKL mechanism is
suppressed near initial perpendicular configurations. As shown
in Figure 24 in Appendix A.2, most of these systems have
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