Post-formation dynamical evolution

Smadar Naoz UCLA

Sagan Workshop July 2015

Copernicus 1661

AstroDynamics

Our solar System

the rotation of the sun

Our solar System

Formation story

Other solar systems

Other solar systems

Other solar systems

the rotation of
the star

Prograde:

Other solar systems

the rotation of

Other solar systems

the rotation of

Other solar systems

the rotation of
. the star

Kepler planet candidates are in a very close orbit

 90% of all planets and planet candidates are in a very close orbit Illustration of the planets and planet candidates as if they orbit a single star

Astrodynamics is alive!

Selected dynamical

processes

2. Planet-Planet scattering

- Mean motions resonances

2 "Classical" secular evolution
2 The eccentric Kozai-Lidov (EKL) mechanism

Selected dynamical processes

2. Planet-Planet scattering
= Mean motions resonances
2"Classical" secular evolution
2 The eccentric Kozai-Lidov (EKL) mechanism

Post evolution dynamics

 in planetary systems1. Scattering events Rasio \& Ford 1996 larger than orbital $S_{\text {cal }}$ Packed systems, outcome: inclined, eccentric, ejectior

ejection

Nagasawa et al 2008

Selected dynamical processes

a. Planet-Planet scattering

ح Mean motions resonances
2"Classical" secular evolution

* The eccentric Kozai-Lidov (EKL) mechanism

Post evolution dynamics

$\operatorname{in}_{\text {aces }}$ planetary system Resonances
 2. Mean Motion Resonances $\frac{P_{1}}{P_{2}} \sim \frac{n}{m}$ outcome: in most cases lead to unstable config.
 Orbital Time $S_{\text {cal }}$

 sometimes we stable config. Galilean SatellitesIo, Europa, and Ganymede 1:2:4
Laplace resonance
GI 876

Post evolution dynamics

 $i_{\text {inces }}$ planetary systems
Resonances
 2. Mean Motion Resonances $\frac{P_{1}}{P_{2}} \sim \frac{n}{m}$

> "nsstabl|e ${ }^{\text {config: }}$

Chamberlin (2007) Semi-major Axis (AU)

Post evolution dynamics

Resonances
2. Mean Motion Resonances $\frac{P_{P}}{P_{2}} \sim \frac{n}{m}$

Resonances

Problem: predicted migration rates: most planets in resonances.
But reality ...

Few possible explanations:

- Accretion of mass e.g., Petrovich et al (2013)
- Dissipation (maybe tides?') Lithwick \& Wu (2012), Batygin \& Morbidelli (2013)
Resonance capture is temporary Goldreich \& Schlichting (2014) and more

Selected dynamical processes

จ. Planet-Planet scattering

- Mean motions resonances

2 "Classical" secular evolution

* The eccentric Kozai-Lidov (EKL) mechanism

Post evolution dynamics
 3. The secular interactions
 $$
{ }^{L_{o n g}} T_{i_{m_{e}}} S_{c_{\text {ale }}}
$$

smash the mass

Post evolution dynamics

 in planetary systems 3. The secular interactions $_{L_{\text {ongg }_{g} T_{i_{m_{n}}}}}$ ~circular orbits, concentric, coplanar Laskar \& Gastineau (2009)

Selected dynamical processes

2. Planet-Planet scattering

- Mean motions resonances

ン"Classical" secular evolution
2 The eccentric Kozai-Lidov (EKL) mechanism

Post evolution dynamics

~can be eccentric, hierarchical, inclined
Analytical treatment 3
body config.
Perturbations from a far

away perturber

The Kozai-Lidov Formalism

The Kozai-Lidov Formalism

The eccentricity and inclination oscillate
Kozai 1962, Lídov 1962

The Kozai-Lidov Formalism

The eccentricity and inclination oscillate
Kozai 1962, Lidov 1962 Conservation of the z component of angular momentum for both the inner outer orbits
The orbital elements:
Eccentricity: e $\mathrm{L}_{\mathrm{Z}} \sim \sqrt{1-e^{2}} \cos i=$ const
Inclination: i

Prograde orbit cannot become retrograde

Naoz et al, Nature (2011), arXiv:1011.2501

Is it constant?

Is it constant?

inner " 1 "

Is it constant?

inner " 1 "

Adding vector ... Is it constant?

$$
\vec{L}_{t o t}=\vec{L}_{1}+\vec{L}_{2}
$$

Is it constant?

Adding vector ...

$$
\begin{aligned}
& \vec{L}_{\text {tot }}=\vec{L}_{1}+\vec{L}_{2} \\
& \vec{L}_{2}=\vec{L}_{\text {tot }}-\vec{L}_{1}
\end{aligned}
$$

$$
L_{L_{2} \sim \sqrt{1-e_{2}^{2}}}^{L_{2, z} \sim \sqrt{1-e_{2}^{2}} \cos i_{2} \quad L_{t o t} \| \hat{z}}
$$

Is it constant?

Adding vector ...

$$
\begin{aligned}
& \vec{L}_{t o t}=\vec{L}_{1}+\vec{L}_{2} \\
& \vec{L}_{2}=\vec{L}_{t o t}-\vec{L}_{1} \\
& L_{2}^{2}=L_{t o t}^{2}+L_{1}^{2}-2 L_{t o t} \underbrace{L_{1} \cos i_{1}}_{L_{1, z}}
\end{aligned}
$$

Adding vector ...

$$
\begin{aligned}
& \vec{L}_{t o t}=\vec{L}_{1}+\vec{L}_{2} \\
& \vec{L}_{2}=\vec{L}_{t o t}-\vec{L}_{1} \\
& L_{2}^{2}=L_{t o t}^{2}+L_{1}^{2}-2 L_{t o t} \underbrace{L_{1} \cos i_{1}}_{L_{1, z}}
\end{aligned}
$$

Is it constant?

Adding vector ...

$$
\begin{aligned}
& \vec{L}_{t o t}=\vec{L}_{1}+\vec{L}_{2} \\
& \vec{L}_{2}=\vec{L}_{t o t}-\vec{L}_{1} \\
& L_{2}^{2}=L_{t o t}^{2}+L_{1}^{2}-2 L_{t o t} \underbrace{L_{1} \cos i_{1}}_{L_{1, z}}
\end{aligned}
$$

$$
L_{\text {tot }} \| \hat{z}
$$

$$
i_{1}
$$

for the quadrupole approx. $\sim\left(a_{1} / a_{2}\right)^{2}$:
$L_{2}=$ Cons .

Is it constant?

Adding vector ...

$$
\begin{gathered}
\vec{L}_{\text {tot }}=\vec{L}_{1}+\vec{L}_{2} \\
\vec{L}_{2}=\vec{L}_{\text {tot }}-\vec{L}_{1} \\
L_{2}^{2}=\underbrace{2}_{\text {tot }}+L_{1}^{2}-2 \underbrace{L_{\text {tot }} \cos i_{1}}_{L_{1, z}}
\end{gathered}
$$

$$
\begin{aligned}
& L_{2}=\text { Cons } . \\
& L_{1, z}=\text { Cons } . \\
& L_{2, z}=\text { Cons } . \\
& L_{1} \neq \text { Cost } . \quad \mathcal{H}_{\text {quad }}\left(\omega_{1}\right)
\end{aligned}
$$

Is it constant?

Adding vector ...

$$
\begin{aligned}
& \vec{L}_{\text {tot }}=\vec{L}_{1}+\vec{L}_{2} \\
& \vec{L}_{2}=\vec{L}_{\text {tot }}-\vec{L}_{1} \\
& L_{2}^{2}=\underbrace{2}_{\text {tot }}+L_{1}^{2}-2 \underbrace{L_{1, z} \cos i_{1}}_{L_{\text {tot }}} \\
& L_{2} \sim \sqrt{1-e_{2}^{2}} \\
& L_{\text {tot }} \| \hat{z} \\
& L_{2, z} \sim \sqrt{1-e_{2}^{2}} \cos i_{2} \quad L_{1, z} \sim \sqrt{1-e_{1}^{2}} \cos i_{1} \\
& \text { for the quadrupole approx. } \sim\left(a_{1} / a_{2}\right)^{2} \text { : } \\
& L_{2}=\text { Cost. } \\
& L_{1,2} \not \subset \text { Cost. } \\
& L_{2, \pi} \times \text { Cost. } \\
& L_{1} \neq \text { Cost } \text {. } \\
& \text { Naos et al, Nature (2011), arXiv:1011.2501 } \\
& \frac{d f}{f x_{x=2}} \neq \frac{d f(x=2)}{d x}
\end{aligned}
$$

The Kozai-Lidov Formalism EKL

 The eccentricity and inclination oscillate
Conservation of the z component of

 angular momentul for both the inner outer orbitsThe orbital elements:
Eccentricity: e $\mathrm{L}_{\mathrm{z}} \sim \sqrt{1-e^{2}} \cos i=\mathrm{const}$ Inclination: i
$L_{z 1}$ conserved only to lowest order (quadrupole) and for a test particle (massless planet)!

Naoz et al, Nature (2011), arXiv:1011.2501 Naoz et al (2013),MNRAS, arXiv:1107:2414

Our treatment The eccentric Kozai-Lidov mechanism - KEL

ح Allow for the z-component of the angular momenta of the inner and outer orbit to change - already at the quadrupole level

- Expanding the approximation to the octupole level (e.g., Ford et al 2000, Blaes et al 2002 - already done before us!!!
\Rightarrow Both the magnitude and orientation of the angular momentum can change

larger parts of the parameter space
Naoz et al, Nature (2011), arXiv:1011.2501 Naoz et al (2013), MNRAS, arXiv:1107.2414
for test particle approx. see:
Lithwick \& Naoz (2011), ApJ, arXiv:1106.3329
Katz, Dong Malhotra (2011), arXiv:1106.3340

Lets...flip the planet

point mass limit

Lets...flip the planet

Example system: $a_{1}=6 A C 1, a_{2}=100 A C, m_{1}=1 . M_{\operatorname{sun}} M_{2}=1 M_{j}, M_{3}=40 M_{j} i=65$ deg secular dynamics + GR GR effects: e.g., Ford et al 2000, Naoz, Kocsis, Loeb, Yunes 2013
(a) inner orbit inclination
(b) inner orbit eccentricity
(c) inner orbit z-com. angular momentum
(d) inner orbit z-com. angular momentum

Naoz et al, Nature (2011)

point mass limit

Lets...flip the planet

Example system: $a_{1} \approx 6 \mathrm{AC}, a_{2} \approx 100 \mathrm{AC}, m_{1} \approx 1 . M_{\text {sun }} M_{2}=1 M_{j}, M_{3} \approx 4 O M_{j} i \approx 65$ deg secular dynamics $+G R$ GR effects: e.g., Ford et al 2000, Naoz, Kocsis, Loeb, Yunes 2013
(a) inner orbit inclination
(b) inner orbit eccentricity

Compare to: "Standard" (quadrupole) Kozaí
(c) inner orbit z-com. angular momentum
(d) inner orbit z-com. angular momentum

Naoz et al, Nature (2011)

EKL

Question

2 Why high inclination $>40^{\circ}$?
a Is high inclination required also in the EKL mechanism?
a What about chaos?

EKL and the Pendulum

The Pendulum
Rotation/circulation
$H(\theta, p)=\frac{p^{2}}{2 m L}-m g L \cos \theta$

The separatrix Libration

EKL and the Pendulum

Quadrupole test particle limít:

$$
e_{0}=0
$$

-Rotation/circulation

círcular outer orbit

Q: Why 40-140 degrees limits?

Quadrupole test particle limit:

A: The separatrix has:

$$
e_{0}=0, \cos i_{0}=\sqrt{\frac{3}{5}}
$$

Q: Is the 40-140 degrees limits hold?

A: No

Li, Naoz, Kocsis, Loeb 2014, ApJ arXiv:1310.6044
Li, Naoz, Holman, Loeb 2014, ApJ arXiv:1405.0494

Q: Is the 40-140 degrees limits hold?

 A: No

Li, Naoz, Kocsis, Loeb 2014, ApJ arXiv:1310.6044
Li, Naoz, Holman, Loeb 2014, ApJ arXiv:1405.0494

Q: Why Chaos?

A: Octupole - chaotic behavior crossing the separatrix

Maximum eccentricity and initial conditions

Li, Naoz, Holman, Loeb 2014, ApJ, arXiv:1405.0494

Eccentricity spikes

Maximum eccentricity at the test particle regime

Li, Naoz et al, (2014), ApJ 785, 116 + ApJ 791, 86

Gongjie Lí

Astrodynamics is alive!

