Formation and evolution of protoplanetary discs

Richard Nelson Queen Mary University of London

- 1. Disc Formation
- 2. Angular momentum transport
 - Self-gravity
 - Magnetic fields
- 3. Hydrodynamic instabilities
- 4. Dispersal via photoevaporation

Disc formation

Disc formation without magnetic fields

- Angular momentum conservation during collapse of rotating spherical cloud leads to disc formation
- What about in a more realistic scenario of star formation in a turbulent cloud with no net angular momentum?

- Discs form readily during the fragmentation of turbulent clouds
- Angular momentum originates from the shear associated with locally convergent flows

Disc formation with magnetic fields

 Pre-stellar clouds are observed to be magnetised through OH Zeeman measurements (Troland & Crutcher 2008)

1

• For cloud core to collapse require

$$\lambda = \frac{\left(\frac{M}{\Phi}\right)}{\left(\frac{1}{2\pi G^{1/2}}\right)} = \frac{\left(\frac{\Sigma}{B}\right)}{\left(\frac{1}{2\pi G^{1/2}}\right)} >$$

(for ideal MHD!)

- For 1 < λ < 10 collapse with magnetic field aligned with rotation axis → magnetic-braking catastrophe (Allen et al 2003) Non-ideal effects not the solution (e.g Krasnopolsky et al 2012).
- Misaligning field and rotation axis helps: disc formation for $\lambda \sim 4$ (Ciardi & Hennebelle 2010)

Disc formation with magnetic fields

- Pre-stellar clouds are observed to be magnetised through OH Zeeman measurements (Troland & Crutcher 2008)
- For cloud core to collapse require

$$\lambda = \frac{\left(\frac{M}{\Phi}\right)}{\left(\frac{1}{2\pi G^{1/2}}\right)} = \frac{\left(\frac{\Sigma}{B}\right)}{\left(\frac{1}{2\pi G^{1/2}}\right)} > 1$$

(for ideal MHD!)

- For 1 < λ < 10 collapse with magnetic field aligned with rotation axis → magnetic-braking catastrophe (Allen et al 2003) Non-ideal effects not the solution (e.g Krasnopolsky et al 2012)
- Misaligning field and rotation axis helps: disc formation for $\lambda \sim 4$ (Ciardi & Hennebelle 2010)

Disc formation with magnetic fields

- Pre-stellar clouds are observed to be magnetised through OH Zeeman measurements (Troland & Crutcher 2008)
- For cloud core to collapse require

$$\lambda = \frac{\left(\frac{M}{\Phi}\right)}{\left(\frac{1}{2\pi G^{1/2}}\right)} = \frac{\left(\frac{\Sigma}{B}\right)}{\left(\frac{1}{2\pi G^{1/2}}\right)} > 1$$

(for ideal MHD!)

- For 1 < λ < 10 collapse with magnetic field aligned with rotation axis → magnetic-braking catastrophe (Allen et al 2003). Non-ideal effects not the solution (e.g Krasnopolsky et al 2012)
- Misaligning field and rotation axis helps: disc formation for $\lambda \sim 4$ (Ciardi & Hennebelle 2010)
- Discs form efficiently in a turbulent magnetised cloud (Seifried et al 2012, 2014; Joos et al 2013; Nordlund et al 2014)
- Why?
 - Turbulent diffusion of field
 - Turbulent envelope surrounds disc and is not easily torqued by magnetic field
 - Local misalignment of field and rotation axis

Seifried et al (2012)

Nordlund et al (2014)

Angular momentum transport

Requirement for angular momentum transport

- Circumstellar discs observed to have finite life times
 ~ 3 10 Myr (e.g. Haisch et al 2001)
- UV excess indicates that T Tauri stars accrete at rates 10⁻⁹ - 10⁻⁷ M_{Sun} / year (Hartmann et al 1998)
- Gas must lose angular momentum to accrete onto star: j=(GMR)^{1/2}
- Molecular viscosity too small to explain observed accretion rates and disc life times

Internal transport of angular momentum

- Turbulence in disc gives rise to angular momentum transport (Shakura-Sunyaev 1973)
- Viscous stress ~ α P (P=gas pressure)

• Turbulent kinematic viscosity
$$\nu_t = \alpha c_s H$$

Dimensionless coefficient Sound speed Disc semi-thickness

 $10^{-3} < \alpha < 10^{-2}$

Angular momentum extraction via a wind

- Angular momentum extracted from disc by a magnetised wind
 (Blandford & Payne 1982)
- Angular momentum is removed from the disc not redistributed this process cannot be modelled using α -prescription

Self-gravity

- Equivalent to m_{disc}/M_{star} ~ H/R
- Spiral shocks heat gas
- Gas cools at a rate

$$\tau_{\rm cool} = \frac{\Sigma c_s^2 / \gamma (\gamma - 1)}{2\sigma_{\rm SB} T_{\rm eff}^4}$$

Nonlinear evolution depends on local cooling rate (Gammie 2006)

1)
$$au_{
m cool}\Omega\lesssim 3-5$$

Disc fragments into bound clumps

- Equivalent to m_{disc}/M_{star} ~ H/R
- Spiral shocks heat gas
- Gas cools at a rate

$$\tau_{\rm cool} = \frac{\Sigma c_s^2 / \gamma (\gamma - 1)}{2\sigma_{\rm SB} T_{\rm eff}^4}$$

Nonlinear evolution depends on local cooling rate

1)
$$au_{
m cool}\Omega\lesssim 3-5$$

Disc fragments into bound clumps

Clumps migrate inward rapidly

- Equivalent to m_{disc}/M_{star} ~ H/R
- Spiral shocks heat gas
- Gas cools at a rate

$$\tau_{\rm cool} = \frac{\Sigma c_s^2 / \gamma (\gamma - 1)}{2\sigma_{\rm SB} T_{\rm eff}^4}$$

Nonlinear evolution depends on local cooling rate

1)
$$au_{
m cool}\Omega\lesssim 3-5$$

Disc fragments into bound clumps

Clumps migrate inward rapidly

Delivery of gas to central disc regions in bursts may explain FU Orionis and EX Lupi outburst phenomena

- Criterion for local stability against gravitational instability $Q = \frac{c_s \Omega}{\pi G \Sigma} > 1$,
 - Toomre (1964)

- Equivalent to m_{disc}/M_{star} ~ H/R
- Spiral shocks heat gas
- Gas cools at a rate

$$\tau_{\rm cool} = \frac{\Sigma c_s^2 / \gamma (\gamma - 1)}{2\sigma_{\rm SB} T_{\rm eff}^4}$$

Nonlinear evolution depends on local cooling rate

2)
$$au_{
m cool}\Omega\gtrsim 3-5$$

Disc maintains a state of gravitoturbulence where spiral shock heating is balanced by radiative cooling

 $\mathsf{Paardekooper et al} (2011)$

- Criterion for local stability against gravitational instability $Q = \frac{c_s \Omega}{\pi G \Sigma} > 1$,
- Equivalent to m_{disc}/M_{star} ~ H/R
- Spiral shocks heat gas
- Gas cools at a rate

$$\tau_{\rm cool} = \frac{\Sigma c_s^2 / \gamma (\gamma - 1)}{2\sigma_{\rm SB} T_{\rm eff}^4}$$

- Nonlinear evolution depends on local cooling rate
 - 2) $au_{
 m cool}\Omega\gtrsim 3-5$

Disc maintains a state of gravitoturbulence where spirals shock heating is balanced by radiative cooling

FU Orionis outbursts may still occur [₹]
→ temperature rise in inner disc via accretion and spiral shocks → MRI

Toomre (1964)

- Equivalent to m_{disc}/M_{star} ~ H/R
- Spiral shocks heat gas
- Gas cools at a rate

$$\tau_{\rm cool} = \frac{\Sigma c_s^2 / \gamma (\gamma - 1)}{2\sigma_{\rm SB} T_{\rm eff}^4}$$

- Nonlinear evolution depends on local cooling rate
 - 2) $au_{
 m cool}\Omega\gtrsim 3-5$

Disc maintains a state of gravitoturbulence where spirals shock heating is balanced by radiative cooling

FU Orionis outbursts may still occur → temperature rise in inner disc via accretion and spiral shocks → MRI

Magnetic fields

The Magnetorotational Instability (MRI)

Simulations (local and global) produce *α* ~ 10⁻³ - 10⁻² for same initial conditions [Hawley+ (1995), ApJ, 440, 742 ; Fromang & Nelson (2006), A&A, 457, 343 ; Sorathia+ (2012), ApJ, 749, 189]

Flock et al (2011)

Non-ideal MHD effects

The ionisation fraction in protoplanetary discs is very low: $x(e^{-}) \sim 10^{-12} - 10^{-13}$ near the midplane

PPDs are far from being in the ideal MHD limit

Three non-ideal MHD effects need to be considered

- Ohmic resistivity (collisions between electrons and neutrals)
- Ambipolar diffusion (drift between electrons/ions and neutrals)
- Hall effect (drift between electrons and ions)

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times \begin{bmatrix} \mathbf{v} \times \mathbf{B} - \eta \nabla \times \mathbf{B} - \frac{\mathbf{J} \times \mathbf{B}}{\mathbf{v}} + \frac{(\mathbf{J} \times \mathbf{B}) \times \mathbf{B}}{\mathbf{v}} \\ \mathbf{Advection,} & \mathbf{Ohmic} \\ \text{bending/stretching} & \text{Hall} & \text{Ambipolar} \end{bmatrix}$$

Non-ideal MHD effects

Ohmic resistivity

- Disc is thermally ionised inside ~ 0.3 AU (potassium ionised at T > 1000 K)
- Between 0.3 20 AU have layered accretion (Gammie 2006)
 - dead zone near midplane Ohmic diffusion dominates
 - active layer near surface ionised by stellar X-rays & galactic cosmic rays?

Ohmic resistivity

- Disc is thermally ionised inside ~ 0.3 AU (potassium ionised at T > 1000 K)
- Between 0.3 20 AU have layered accretion
 - dead zone near midplane Ohmic diffusion dominates
 - active layer near surface ionised by stellar X-rays & galactic cosmic rays?

Ambipolar diffusion - no net B-field

- Disc surface layers dominated by ambipolar diffusion
- · In absence of a mean magnetic field turbulent stresses are very small

Ambipolar diffusion - with net vertical B-field

- Disc surface layers dominated by ambipolar diffusion
- In presence of a mean vertical magnetic field a magneto-centrifugally driven wind is launched

- In traditional magnetised wind picture (Blandford & Payne 1982):
 - require strong vertical magnetic field
 - angle of inclination between B-field and rotation axis $i > 30^{\circ}$

Ambipolar diffusion - with net vertical B-field

- Disc surface layers dominated by ambipolar diffusion
- In presence of a mean vertical magnetic field a magneto-centrifugally driven wind is launched from the disc surface

Can potentially explain accretion rates ~ 10⁻⁸ M_{Sun} / year

 Note that details (such as mass loss rates in wind) depend on simulation details such as the height of the computational domain

The Hall Effect

Hall effect might be able to revive dead zones if $\Omega \cdot B > 0$ (Salmeron & Wardle 2012)

٠

- Inclusion of Hall effect in disc where $x(e^{-})$ determined with grain free chemistry leads to dramatic increase in magnetic stress in mid plane regions (Lesur et al 2014)
- Horizontal field is amplified and stress arises from field winding in a laminar disc - disc is not turbulent!

The Hall Effect

•

- Inclusion of dust grains in disc chemistry changes x(e) and the magnitudes of Ohmic resistivity, ambipolar diffusion and Hall effect horizontal field amplification reduced
- Inclusion of Hall effect still produces significant stress in mid plane when $\Omega \cdot B > 0$ (Bai 2014)

Summary of MHD effects

- Fully developed MRI-turbulence present only in inner few x 0.1 AU
- Magneto-centrifugal wind between ~ 0.3 20 AU with significant mid-plane stress if Ω . B > 0
- Outer regions sustain weak MRI-turbulence modified by ambipolar diffusion
 (Simon et al 2013; Bai 2015)

Hydrodynamic instabilities

- Driven by a radial extremum in the quantity $\mathcal{L} = \frac{\Sigma}{2\omega_z} \left(\frac{P}{\Sigma^{\gamma}}\right)^{2/\gamma}$ (Lovelace et al 1999; Li et al 2000)
- The linear instability saturates by forming ~ 3 5 anticyclonic vortices that tend to merge into a single vortex over time

Li et al (2001)

- Driven by a radial extremum in the quantity $\mathcal{L}=$

$$\frac{\Sigma}{2\omega_z} \left(\frac{P}{\Sigma^\gamma}\right)^{2/\gamma}$$

 The linear instability saturates by forming ~ 3 - 5 anticyclonic vortices that tend to merge into a single vortex over time

• Driven by a radial extremum in the quantity \mathcal{L} =

$$= \frac{\Sigma}{2\omega_z} \left(\frac{P}{\Sigma^{\gamma}}\right)^{2/\gamma}$$

2.0

Lin (2012)

1.5

1.0

2.5

- The linear instability saturates by forming ~ 3 5 anticyclonic vortices that tend to merge into a single vortex over time
- 2.5 RWI can be triggered at: • 2.0 - interface between active 1.5 and dead zones 1.0 (Lyra & MacLow 2002; Varnier & Tagger 2006; Lyra et al 2014; Faure et al 2014) 3,5 0,0 - edge of a gap formed by 0.5 a planet (de Val-Boro et al 2006; Lin & Papaloizou 2011) 1.0 1,5

2.0

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5

- Driven by a radial extremum in the quantity $\mathcal{L} = \frac{\Sigma}{2\omega_z} \left(\frac{P}{\Sigma^{\gamma}}\right)^2$
- The linear instability saturates by forming ~ 3 5 anticyclonic vortices that tend to merge into a single vortex over time

∆Dec (")

- RWI can be triggered at:
 - interface between active and dead zones (Lyra & MacLow 2002; Varnier & Tagger 2006; Lyra et al 2014; Faure et al 2014)
 - edge of a gap formed by a planet (de Val-Boro et al 2006; Lin & Papaloizou 2011)
- Vortices trap dust efficiently
 - possible that Oph IRS 48 hosts a planet-induced vortex?

(Van de Marel et al. 2013)

Van de Marel et al. (2013) 0.5 0.5∆Dec (") 0.0 0.0 -0.5-0.530 AU dust $\mathbf{m}\mathbf{m}$ -1.0-0.51.0 0.50.0 -1.00.5 1.0 0.0 -0.5 △RA(") -1.0△RA(") $t \sim 3.0 * 10^4$ years $t \sim 1.0 * 10^5$ years 3.0 2.7 2.4 0.9 0.6 50 100 150 -100 100 150 -100-50 50 0 X (AU) X (AU)

Subcritical baroclinic instability (SBI)

• Requires a negative entropy gradient (Peterson et al 2007)

$$\frac{d\log(P\rho^{-\gamma})}{d\log R} < 0$$

- Nonlinear instability requires finite-amplitude perturbations (Lesur & Papaloizou 2010)
 - needs to be triggered by linear instabilities: e.g. convective overstability or vertical shear instability? (Klahr & Hubbard 2014; Lyra 2014; Nelson et al 2013)
- Sustaining vortices requires short thermal relaxation time scale
 most likely to operate in outer disc regions (Lesur & Papaloizou 2010)

Vertical shear instability (VSI)

- Linear instability (Goldreich & Schubert 1967; Fricke 1968; Urpin 2003; Nelson et al 2013)
- Arises because a disc with T=T(R) has vertical shear
- Requires thermal relaxation times

 local orbital period very short!
 likely to operate in outer regions of
 protoplanetary discs (Nelson et al 2013; Lin & Youdin 2015)
- In nonlinear saturated state it can generate $\alpha \sim 10^{-4} 10^{-3}$
- Also generates vortices (Richard, Nelson & Umurhan 2015)

Disc dispersal

Photoevaporation

- Viscous evolution of protoplanetary discs cannot account for their complete dispersal
 or rapid time scales inferred for disc removal (Kenyon & Hartmann 1995)
- Heating of disc surface by EUV, FUV and X-ray photons leads to hydrodynamic escape beyond radius $r_g = \frac{GM_*}{c_s^2}$ (sound speed ~ escape velocity from central star)
- External evaporation by O stars in Orion leads to mass loss rates ~ 6 x 10⁻⁷ M_{sun} / yr and disc life times ~ 10⁵ yr (Johnstone et al 1998; Henney et al 2002)
- X-ray and FUV photons from central star dominate evaporation of isolated T Tauri stars with mass loss rates ~ $10^{-8} M_{sun}/yr$ (assuming $L_X \sim 10^{30} erg/s$) (Gorti & Hollenbach 2009; Owen et al 2010)

