Planet Demographics as a Function of Initial Disc Mass Population Synthesis Models Compared to Observed Exoplanet Populations

> Group 2: Alexandria Gonzales (MIT) John Biersteker (MIT) Niraj Inamdar (MIT) Alexandra Greenbaum (JHU) Anael Wunsche (Univ. Grenoble) Zachary Draper (Univ. Victoria) Daisuke Suzuki (Univ. Notre Dame) Xu Huang (Princeton)

31 July 2015 Sagan Summer Workshop 2015

Introduction

- Planetary population synthesis models are way of understanding how exoplanets form and evolve
 - ⇒ Observational comparison can be used to constrain planet formation models
- There are significant challenges in using this approach to understanding exoplanets
 - \Rightarrow Synthesis models are incomplete
 - Parametrization for computational efficiency decreases fidelity
 - Incomplete understanding of all relevant physics
 - ⇒ Observational biases complicate interpretation of comparison between modeled and observed exoplanets
- Nevertheless, such models are a powerful way to better understand and characterize **statistically** the observed population of exoplanets

Science Question

- How does disc mass affect planet formation and evolution?
 - ⇒Disc mass drives the availability of material from which planets are made
 - How efficiently cores are formed
 - How much gas is available for core gas accretion
 - \Rightarrow Disk mass also affects migration rates
 - ⇒Accounting for poorly-understood correlation between host star mass and disc mass may have a meaningful impact on planet formation

Predictions

- Increase in disc mass leads to increase in core masses
 - \Rightarrow More efficient planetesimal accretion
 - $\Rightarrow More efficient gas accretion$
- Faster migration to inner disc for Type I migration, weaker dependence for Type II migration ($M_p \gtrsim M_{Sat}$)

• Key variables

 $\Rightarrow Gas disc surface$ density

$$f_{\rm g} \Sigma_{\rm d}$$

 \Rightarrow Inner and outer disc

radius

$$(a_{\text{inn},a_{\text{out}}})$$

$$\Rightarrow$$
 Host star mass

 M_{\bigstar}

Simulations (1/2)

- We ran a set of simulations to investigate effect of discmass relevant parameters
- Systematic study

 $f_{\rm g} = [0.5,8] (\times 5, \text{logarithmically-spaced})$ $a_{\rm inn} = [0.01, 0.05] \text{ AU}$

 $a_{\rm out}^{\rm min}$ = [30,300] AU

Population synthesis study

Study 1

• $f_g = \{0.5, 1, 2, 4, 8\}, \text{ fix } (a_{inn}, a_{out}) = (0.03, 30) \text{ AU}, \text{ other parameters nominal}$

Study 2

• Fix f_g at 4, vary disc size , $a_{inn} = [0.01, 0.05]$ AU (linearly-spaced), $a_{out} = [10, 300]$ AU (logarithmically-spaced)

Study 3

• Vary disc mass with stellar mass, M_{\star} = {0.1M_{\odot}, 0.5M_{\odot}, 2M_{\odot}}

Simulations (2/2)

- Shortcomings/limitations
 - \Rightarrow No dynamical interaction between planets
 - No planetesimal-driven migration
 - \Rightarrow No pebble accretion
 - \Rightarrow No post-disc dissipation thermal evolution
 - Important for final planet radius
 - $\Rightarrow Parametrized envelope accretion model \\\Rightarrow Viscosity \alpha model?$
 - \Rightarrow Migration?

Results: Final a_p (systematic)

31 July 2015

Disc Masses | Sagan Summer Workshop 2015

Results: Final a_p (systematic)

Disc Masses | Sagan Summer Workshop 2015

Results: a_p vs. M_p (population synthesis)

Disc Masses | Sagan Summer Workshop 2015

Results: a_p vs. M_p (population synthesis)

Results: a_p vs. M_p (population synthesis), $\mu(f_g) = 3.0$ varying disk boundaries

Results: a_p vs. M_p (population synthesis)

Results: a_p vs. M_p (population synthesis) $M_{\star} = \{0.1, 0.5, 1.0, 2.0\}$ M_{\odot}

- Vary stellar mass linearly with the mean of the disc mass distribution
- Other parameters held at nominal values
- Competing effects \rightarrow Fooding zono
 - $\begin{array}{l} \Rightarrow \ {\rm Feeding\ zone} \\ {\rm width\ inversely} \\ {\rm proportional\ to} \\ M_{\bigstar} \end{array}$
 - $\begin{array}{l} \Rightarrow \text{Interaction} \\ \text{rates} \\ \text{proportional to} \\ \Omega \end{array}$

31 July 2015

Disc Masses | Sagan Summer Workshop 2015

Conclusions

- Increase in f_g leads to overall increase in planet mass and migration inwards for lower mass planets
 - ⇒Less dramatic migration for larger mass planets
- Co-varying $f_{\rm g}$ and M_{\bigstar} produces similar results

Backup Material

Changing the variance, still hard to match detected planet population

Smaller variance for small and large average disk mass – *exaggerates some effects of low and high disk mass*

Large variance for nominal average disk mass – *smooths out the distribution for lower mass, large separations.*

