PLANET FORMATION INTHE OUTER DISK
 Kaitlin Kratter

忍
THE UNIVERSITY OF ARIZONA
COLLEGE OF SCIENCE
Astronomy
\& Steward Observatory

We don't really know about "outer disk" exoplanets...

What is a planet?

Challenge: come up with a better definition than the IAU... (hint: what changed in 1995?)

What is a planet?

Challenge: come up with a better definition than the IAU... (hint: what changed in 1995?)

A HANDFUL OF PLANETS CAUSE A *LOT* OFTROUBLE

Marois+ 2009,20II, Kalas 2013

A HANDFUL OF PLANETS CAUSE A *LOT* OFTROUBLE

THE RUNTS OFTHE LITTER? (KRATTER ET AL, 20IOB)

THE RUNTS OFTHE LITTER?
 (KRATTER ET AL, 20IOB)

Hinkley + 10, Marois+ 10,Lafrieniere +11, Janson+11, Ireland+11, Crepp+12

THE RUNTS OFTHE LITTER? (KRATTER ET AL, 20IOB)

FRAklercssed), Marois+ 10,Lafrieniere +11, Janson+11, Ireland+11, Crepp+12

THE RUNTS OFTHE LITTER? (KRATTER ET AL, 20IOB)

HRAKlercseq), Marois+ 10,Lafrieniere +11, Janson+11, Ireland+11, Crepp+12

THE RUNTS OFTHE LITTER?
 (KRATTER ET AL, 2010B)

HRAklercseq)D, Marois+ 10,Lafrieniere +11, Janson+11, Ireland+11, Crepp+12

THE RUNTS OFTHE LITTER?
 (KRATTER ET AL, 2010B)

FRAklercssed), Marois+ 10,Lafrieniere +11, Janson+11, Ireland+11, Crepp+12

THE RUNTS OFTHE LITTER? (KRATTER ET AL, 20IOB)

HRAKNercsedD, Marois+ 10,Lafrieniere +11, Janson+11, Ireland+11, Crepp+12

THE RUNTS OFTHE LITTER? (KRATTER ET AL, 20IOB)

HRAklercseed), Marois+ 10,Lafrieniere +11, Janson+11, Ireland+11, Crepp+12

WHAT'S SO HARD ABOUT PLANET FORMATION INTHE OUTER DISK?

- Classic Answer:
- It takes longer than the disk lifetime to build a big enough solid core to trigger runaway atmospheric growth
- Even extreme assumptions about accretion (zero velocity dispersion) struggle

"Classic" Runaway growth problem

- Without considering gas-drag, growth by CA in 3 Myr requires extreme assumptions about the planetesimal velocity dispersion and disk mass, which are hard to satisfy simultaneously

Growth timescales change when including aerodynamic pebble capture

Lambrechts \& Johansen 2012

- Gas giants can in principal form even at 50 AU in disk lifetime
- Problem is first mass doubling time, not the last

BUT: need initial ~pluto mass cores...

The critical core mass to trigger runaway growth declines with semi-major axis

- Even though growth times are slower, less core growth is required
- Temperature goes down, Bondi radius goes up, and opacity declines

Piso \& Youdin 2014

WHAT ABOUTTHE EVOLUTION OF GI FRAGMENTS?

Boley+20 I I

First order: how massive are fragments?

- Initial mass estimates all scale with

$$
\Sigma H^{2}
$$

- Fragments that are not disrupted can also easily grow from the parent disk

Kratter+2010,Boley+2010,Forgan \& Rice 2013, Young \& Clarke 2015

FRAGMENT EVOLUTION: COOLING

Galvagni+2012

- Collapse calculations including realistic cooling collapse to <| Rh in I-IO dynamical times.
- At fixed radius, they should survive (see Kratter \& Murray-Clay for analytic collapse requirement)

Growth, Migration, Disruption

Fragments migrate inwards on ~ 10 outer dynamical timescales.

Zhu et al 2012

Growth, Migration, Disruption

Fragments migrate inwards on ~ 10 outer dynamical timescales.

$$
\tau_{m i g}=784\left(\frac{M_{c}}{0.01 M_{\odot}}\right)^{-1}\left(\frac{R}{100 A U}\right)^{1.75} y r
$$

WHAT ABOUT SOLIDS IN GI?

- solids (if they grow...) can collect in spiral arms (pressure bumps), and sediment into a core (though won't work for cores > 6Mj)
- Tidal disruption could leave behind the differentiated core, leading to rocky planets in the inner disk
- Fragments can also become enriched after formation, but timescale is short if they are

Boley +2011 migrating.

- If they don't migrate, then GI "planets" at large radii might have substantial metal enrichment.

Most promising role is not for wide orbit planets!

PUTTING IT ALLTOGETHER

- Gl population synthesis: Forgan \& Rice 2013
- Pros: various opacities, migration models, core growth, sedimentation
- Cons: no subsequent gas accretion onto cores, no subsequent gas accretion onto the disk

We don't really know about "outer disk" exoplanets, but...

- more recent CA models find it easier to make giant planets at large radii
- more recent Gl models make objects which we have not observed...

