The Formation of Planetesimals and Large Cores

Andrew Youdin

STEWARD
OBSERVATORY

Giant Planets are More Common Around Metal Rich Stars

Four Stages of Planet Formation:
 The Core Accretion Model

Planetesimal Formation Spans Many Orders of Magnitude and Different Processes

50 km planetesimal

mass growth

$$
\times 10^{33}
$$

50 km planetesimal

mass growth
$\times 10^{9}$

Key Aspects of Planetesimal Formation: Starting Small in a Gas Disk

- Surface gravity is weak
- Sticking is important for dust growth
- Aerodynamic gas drag is crucial
- Radial drift introduces a "meter-size" barrier
- Resolution: particle concentration and gravitational collapse

Radial Drift Timescale Constraints (aka the "Meter-Size Barrier")

sub-Keplerian gas rotation
optimal coupling gives fastest drift:
$1 \mathrm{AU} /(50 \mathrm{~m} / \mathrm{s})$ ~ 100 yr

Drag Forces in a "Minimum Mass" Disk Model

Dimensionless stopping time

Radial drift time

Youdin (2010)

Climbing the size ladder

Growth by Sticking

b)

MASS TRANSFER
(BEITZ ET AL. 2O11)

(COLWELL 2003)

The cm-size barrier of bouncing and fragmentation

Mass transfer overwhelmed by fragmentation

compare to:
drift speeds ~ 50 m/s
turbulent speeds ~

$$
10 \sqrt{\frac{\alpha}{10^{-4}}} \mathrm{~m} / \mathrm{s}
$$

Three modes of particle concentration

1. Static
2. Passively Dynamic
3. Spontaneous

Fig. 3.
"local condensations" (Edgeworth 1943)

1. Static Concentration:

Particles collect in long-lived pressure maxima.

Ring (Whipple 1972)
Vortex (Barge \& Sommeria 1995)

EFFECT OF GAS PRESSURE GRADIENT ON PARTICLE MOTION
sources: dead zone boundaries, snow lines, zonal flows, spiral arms and more

Seen by ALMA?! (van Dishoeck et al. 2015)
2. Passively Dynamic, i.e. Turbulent Concentration: Particles concentrate briefly by interacting with eddies.

"dust devils" are dynamic, but a different effect
(credit: Joseph Brauer)
2. Passively Dynamic, i.e. Turbulent Concentration: Particles concentrate briefly when expelled from eddies.

(Wang \& Maxey 1993)

Are concentrations long-lived and massive enough to form planetesimals?
(Cuzzi et al. 2008; Pan et al. 2011; Hopkins 2014)

3. Spontaneous: Particles trigger their own concentration via the streaming instability

The streaming instability:
Complex behavior from simple ingredients

Two-way drag forces \&

$$
\begin{gathered}
\frac{\partial \rho_{p}}{\partial t}+\nabla \cdot\left(\rho_{p} \boldsymbol{V}_{p}\right)=0 \\
\nabla \cdot \boldsymbol{V}_{g}=0
\end{gathered}
$$

Radial pressure gradient (Youdin \& Goodman 2005)

$$
\begin{aligned}
& \frac{\partial \boldsymbol{V}_{p}}{\partial t}+\boldsymbol{V}_{p} \cdot \nabla \boldsymbol{V}_{p}=-\Omega_{\mathrm{K}^{r}}^{r}-\frac{\boldsymbol{V}_{p}-\boldsymbol{V}_{g}}{t_{\text {stop }}}, \\
& \frac{\boldsymbol{V}_{g}}{\partial t}+\boldsymbol{V}_{g} \cdot \nabla \boldsymbol{V}_{g}=-\Omega_{\mathrm{K}}^{2} \boldsymbol{r}+\frac{\rho_{p}}{\frac{\boldsymbol{V}_{p}-\boldsymbol{V}_{g}}{\rho_{g}}} \frac{\boldsymbol{V}_{\text {stop }}}{t^{2}}
\end{aligned}-\frac{\nabla P}{\rho_{g}},
$$

Local box simulations of gas \& "super"-particles (Youdin \& Johansen 2005, Johansen et al. 2007, etc; Bai \& Stone 2010)

Particles trigger their own concentration via the streaming instability

$$
t=\quad 0.1
$$

feeds off of radial drift (Johansen \& Youdin 2007)

Conditions for strong particle concentration

1. Particle sizes near optimal coupling, $\tau_{s} \approx 0.1-1.0$
2. Particle-gas ratio, $Z \gtrsim 1 \%$

- varies w/ radial pressure gradient (Bai \& Stone, 2010b)
- exoplanet-metallicity correlation?
- Role of box size and boundary conditions? See poster by Rixin Li
"Sub-Solar:" "Super-Solar:" weak clumping

Particle density: radius vs. height (top) radius vs. time (bottom)
$\tau_{\mathrm{s}}=0.1-0.4$,
3-12 cm @ 5 AU

Streaming Inst. triggering planetesimal formation

Gravitational collapse from ~few cm-sizes into ~100 km, planetesimals
(Simon et al., in prep;
also Johansen, Youdin \& MacLow 2009; Johansen et al 2007, 2012)

The bouncing and fragmentation barriers remain

- What if particles don't grow large enough, to $T_{s} \approx 0.1-1.0$?
A. Less gas
B. Look at interplay with other mechanisms
- pressure bumps
- direct gravitational instability (Safronov '69, Goldreich \& Ward '73)

Goal:
~10 cm @ 1 AU,
~mm @ 30 AU

Slow "secular" gravitational instabilities collect small particles into wide rings

- Current studies analytic
(Ward 1976; Youdin 2005, 2011; Shariff \&
Cuzzi 2011, Takahashi \& Inutsuka 2014)
- Long time and length scales
- Opportunity to explain observed disk structures

SS evidence for Gravitational Collapse

KBO binary colors match!

(Benecchi et al. 2009, Nesvorny, Youdin \& Richardson 2010)

Comets have tails!

(Blum et al. 2014)

Comets formed in solar-nebula instabilities! - An experimental and modeling attempt to relate the activity of comets to their formation process
J. Blum ${ }^{\text {a }}$, B. Gundlach ${ }^{\text {a,*, S. Mühle }}{ }^{\text {a }}$, J.M. Trigo-Rodriguez ${ }^{\text {b }}$

Four Stages of Planet Formation:
 The Core Accretion Model

1. Dust to

Planetesimals

2. From

Planetesimals to Planets \& Cores

3. Growth of Gas Giant
Atmospheres
4. Planet

Migration and
Scattering

Options for growing terrestrial planets and cores

2. Aerodynamically
3. Giant impacts assisted "pebble accretion"

Ormel \& Youdin (unpublished)

Key Issues in Terrestrial Planet \& Core Growth

1. Timescale

- Potentially faster for aerodynamic pebbles

The problem w/ weak drag Ormel \& Klahr (2012)

Summary

- Planetesimal formation
- Starts with dust coagulation
- Ends with gravitational collapse
- Streaming instability and other particle concentration mechanisms bridge the "meter-size barrier"
- Terrestrial planet and core formation
- New: an early phase of aerodynamic pebble accretion

