The Formation of Planetesimals and Large Cores

Andrew Youdin

(Youdin & Kenyon, 1206:0738)

Giant Planets are More Common Around Metal Rich Stars

Four Stages of Planet Formation: The Core Accretion Model

1. Dust to Planetesimals From
 Planetesimals
 to Planets &
 Cores

3. Growth of Gas Giant Atmospheres

4. PlanetMigration andScattering

Credits: A. Johansen, F. Sulehria, D. Lin, P. Armitage

Planetesimal Formation Spans Many Orders of Magnitude and Different Processes

µm dust

50 km planetesimal

mass growth $\times 10^{33}$

50 km planetesimal

MJup Giant Planet

mass growth × 10⁹

Key Aspects of Planetesimal Formation: Starting Small in a Gas Disk

- Surface gravity is weak
- Sticking is important for dust growth
- Aerodynamic gas drag is crucial
 - Radial drift introduces a "meter-size" barrier
- Resolution: particle concentration and gravitational collapse

Radial Drift Timescale Constraints (aka the "Meter-Size Barrier")

Drag Forces in a "Minimum Mass" Disk Model

Dimensionless stopping time

Radial drift time

Youdin (2010)

Climbing the size ladder

Chiang & Youdin (2010, AREPS)

Growth by Sticking

FRAGMENTATION

(BLUM & MEUNCH 1993)

inefficient growth from mm—km compounds meter-size barrier

MANY OUTCOMES

MASS TRANSFER (BEITZ ET AL. 2011)

EROSION (COLWELL 2003)

The cm-size barrier of bouncing and fragmentation

Three modes of particle concentration

1. Static

2. Passively Dynamic

3. Spontaneous

1. Static Concentration: Particles collect in long-lived pressure maxima.

sources: dead zone boundaries, snow lines, zonal flows, spiral arms and more

Seen by ALMA?! (van Dishoeck et al. 2015)

2. Passively Dynamic, i.e. Turbulent Concentration: Particles concentrate briefly by interacting with eddies.

"dust devils" are dynamic, but a different effect (credit: Joseph Brauer)

2. Passively Dynamic, i.e. Turbulent Concentration: Particles concentrate briefly when expelled from eddies.

Are concentrations long-lived and massive enough to form planetesimals? (Cuzzi et al. 2008; Pan et al. 2011; Hopkins 2014)

3. Spontaneous: Particles trigger their own concentration via the streaming instability

(credit: Martine Maes)

The streaming instability: Complex behavior from simple ingredients

Two-way drag forces & Radial pressure gradient (Youdin & Goodman 2005)

$$\begin{aligned} \frac{\partial \rho_p}{\partial t} + \nabla \cdot (\rho_p V_p) &= 0, \\ \nabla \cdot V_g &= 0, \\ \frac{\partial V_p}{\partial t} + V_p \cdot \nabla V_p &= -\Omega_{\rm K}^2 r \frac{V_p - V_g}{t_{\rm stop}}, \\ \frac{\partial V_g}{\partial t} + V_g \cdot \nabla V_g &= -\Omega_{\rm K}^2 r + \frac{\rho_p}{\rho_g} \frac{V_p - V_g}{t_{\rm stop}} - \frac{\nabla P}{\rho_g}, \end{aligned}$$

Local box simulations of gas & "super"-particles (Youdin & Johansen 2005, Johansen et al. 2007, etc; Bai & Stone 2010)

Particles trigger their own concentration via the streaming instability

feeds off of radial drift (Johansen & Youdin 2007)

Conditions for strong particle concentration

- 1. Particle sizes near optimal coupling, $\tau_s \approx 0.1-1.0$
- 2. Particle-gas ratio, $Z \gtrsim 1\%$
 - varies w/ radial pressure gradient (Bai & Stone, 2010b)
 - exoplanet-metallicity correlation?
- Role of box size and boundary conditions? See poster by Rixin Li

(Johansen, Youdin & Mac Low 2009)

"Super-Solar:"

"Sub-Solar:" weak clumping

Streaming Inst. triggering planetesimal formation $Log_{10}(\Sigma_{p}/<\Sigma_{p}>)$

Gravitational collapse from ~few cm-sizes into ~100 km, planetesimals

(Simon et al., in prep; also Johansen, Youdin & MacLow 2009; Johansen et al 2007, 2012)

The bouncing and fragmentation barriers remain

- What if particles don't grow large enough, to $\tau_s \approx 0.1-1.0?$
 - A. Less gas
 - B. Look at interplay with other mechanisms
 - pressure bumps
 - direct gravitational instability (Safronov '69, Goldreich & Ward '73)

R [AU]

Slow "secular" gravitational instabilities collect small particles into wide rings

- Current studies analytic (Ward 1976; Youdin 2005, 2011; Shariff & Cuzzi 2011, Takahashi & Inutsuka 2014)
- Long time and length scales
 - Opportunity to explain observed disk structures

SS evidence for Gravitational Collapse

KBO binary colors match! (Benecchi et al. 2009, Nesvorny, Youdin & Richardson 2010)

Comets have tails! (Blum et al. 2014)

Comets formed in solar-nebula instabilities! – An experimental and modeling attempt to relate the activity of comets to their formation process

J. Blum^a, B. Gundlach^{a,*}, S. Mühle^a, J.M. Trigo-Rodriguez^b

image: John Laborde

Four Stages of Planet Formation: The Core Accretion Model

1. Dust to Planetesimals 2. From Planetesimals to Planets & Cores

3. Growth ofGas GiantAtmospheres

4. PlanetMigration andScattering

Credits: A. Johansen, F. Sulehria, D. Lin, P. Armitage

Options for growing terrestrial planets and cores

1. Giant impacts

2. Aerodynamically assisted "pebble accretion"

Key Issues in Terrestrial Planet & Core Growth

- 1. Timescale
 - Potentially faster for aerodynamic pebbles
- 2. Availability of Mass
 - Planetesimal accretion stalls at "isolation mass"
 - Radial drift overcomes isolation

$$m_{iso} = \frac{(2\pi B\Sigma)^{3/2}}{(3M_{\star})^{1/2}} a^3 \approx 0.08 \left(\frac{B}{7}\right)^{3/2} \left(\frac{FZ_{\rm rel}}{0.33}\right)^{3/2} \left(\frac{M_{\star}}{M_{\odot}}\right)^{-1/2} \left(\frac{a}{AU}\right)^{3/4} \,\,\mathrm{M_{\oplus}}$$
Youdin & Kenyon (2012)

Core growth to $10 M_{\oplus}$ 10^{8} Planetesimals 10^{7} 10^{6} $\Delta t/\mathrm{yr}$ 10⁵ Pebbles 10^{4} 10^{3} 10^{0} 10¹ 10^{-1} 10^{2} r/AU $x_{S} = 1.9$ $\zeta_w = 1$, St = 1000 2 $\bar{x_{S}} = -1.9$ 3-Body $\boldsymbol{\succ}$ 0 -1 -2|D -22 -10 The problem w/ weak drag Ormel & Klahr (2012)

Lambrechts & Johansen (2012)

color me bad image?

Summary

- Planetesimal formation
 - Starts with dust coagulation
 - Ends with gravitational collapse
 - Streaming instability and other particle concentration mechanisms bridge the "meter-size barrier"
- Terrestrial planet and core formation
 - New: an early phase of aerodynamic pebble accretion