Bayesian Prifors for Transits and RiVs

but first, a brief advertisement

COOL WORLDS LAB

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

http://coolworlds.astro.columbia.edu
(some) things we are interested in...
population modeling, neural networks, exomoons, exorings, long-period planets, single-transits, compact objects in photometry, SETI, rocky planet compositions, LSST, TESS, GAIA to learn more about our group!

www.youtube.com/c/CoolWorldsLab

Think of some cases where...

a detection claim was made about something for which the world/scientific community has a very strong prior against
did it turn out right or wrong?

> "extraordinary claims require extraordinary evidence" (to overwhelm our prior belief)

Carl Sagan

$$
\mathrm{P}(\mathbb{\Theta} \mid \mathcal{D}, \boldsymbol{\mu}) \propto \mathrm{P}(\mathcal{D} \mid \mathbf{\Theta}, \boldsymbol{M}) \mathrm{P}(\mathbf{\Theta} \mid \boldsymbol{\mu})
$$

the end result, the posterior, is a balancing act between the likelihood and the prior

- Think about the outcome being affected by both the likelihood and the prior
- Posteriors from low signal-to-noise data (low likelihood) are strongly affected by the priors
- Posteriors from high signal-to-noise data (high likelihood) are weakly affected by the priors

some people despise Bayesian statistics because one needs to define a prior

this is not a weakness! it's a strength!

- If your result changes when you change between reasonable priors, then this is telling you that your data are crappy, which is useful information!!
- Your previous posterior can become the prior for the next experiment: "Bayesian learning"

the sampler "guesses" different θ vectors, calculates the posterior probability of that guess, and then makes small jumps

PROCESS

actually the point of the sampler is to make intelligent guesses with high posterior probabilities

OUTPUT

how to...
 choose a prior

how to... implement a prior

log likelihood penalization
informative
conjugate
useful for analytic work, but not really used in practical exoplanet work

how to... choose a prior

how to... implement a prior

uninformative

log likelihood penalization
informative
conjugate
useful for analytic work, but not really used in practical exoplanet work

uninformative priors: uniform

bit of misnomer, really a prior which is not subjectively elicited
simplest rule is via the principle of indifference, which assigns equal probability to all possibilities = a uniform prior

uninformative priors: uniform

often exoplaneteers technically use an improper prior for this, since a and b are not formally defined in their paper or even code
here, the user is treating $\mathrm{a}=-\infty$ and/or $\mathrm{b}=+\infty$, but that leads to $\operatorname{pdf}(x)=0$ everywhere $=>$ you should be rejecting all MCMC trials!
in practice, this is generally OK though, since
$\pi=$ a constant for a uniform prior
$\pi_{i+1}-\pi_{i}=0$ for a uniform prior
thus the jump acceptance probability is insensitive to a or b, and thus a and b can be just very large numbers

general case	someone ignoring priors	someone ignoring priors and assuming normal errors
Metropolis Rule if $\mathscr{P}_{\text {trial }}>\mathscr{P}_{\text {i }}$, accept the jump, so $\theta_{i+1}=\theta_{\text {trial }}$ if $\mathscr{P}_{\text {trial }}<\mathscr{P}_{\text {i }}$, accept the jump with probability $\mathscr{P}_{\text {trial }} / \mathscr{P}_{i}$	Metropolis Rule if $\mathscr{L}_{\text {trial }}>\mathscr{L}_{\text {i }}$, accept the jump, so $\theta_{i+1}=\theta_{\text {trial }}$ if $\mathscr{L}_{\text {trial }}<\mathscr{L}_{i}$, accept the jump with probability $\mathscr{L}_{\text {trial }} / \mathscr{L}_{i}$	Metropolis Rule if $\boldsymbol{\chi}^{2}$ trial $<\boldsymbol{\chi}^{2}$, accept the jump, so $\theta_{i+1}=\theta_{\text {trial }}$ if $\boldsymbol{\chi}^{2}$ trial $>\boldsymbol{\chi}^{2}$ i, accept the jump with probability $\exp \left(-\Delta \chi^{2} / 2\right)$

you are using unbounded uniform
priors implicitly

uninformative priors: uniform

often, a or b or both can be set to some physical lower/upper bound
eccentricity, e>0 by definition and $\mathrm{e}<1$ if the orbit is periodic
ratio-of-radii, $\mathrm{p}>0$ by definition and $\mathrm{p}<1$ if the object is smaller than the star
$a / R^{*}, a_{R}>(1+p)$ or else the planet is in contact with the star

uninformative priors: uniform

however, sometimes we deliberately explore unphysical solutions...

e.g. ratio-of-radii, $-1<\mathrm{p}<+1$ and treat negative radii as being inverted transits

for amplitude-like parameters (e.g. p, e, K) near zero, helps avoid posterior bias due to boundary conditions...

if we set a boundary condition at 0, MCMC posteriors get positivelyskewed due to rejection
bias of walkers

uninformative priors: uniform

this is particularly well-known for eccentricity, where even high SNR data with a truth of e=0 return posteriors positively biased if one fits for e directly see Lucy \& Sweeney (1971), Zakamska, Pan \& Ford (2011), Lucy (2012)
for eccentricity, a good trick is to fit for $-1<e^{1 / 2} \sin \omega<+1$ and $-1<e^{1 / 2} \cos \omega<+1$

uninformative priors: uniform

if you have to calculate the parameter of interest from your fitted terms, check out what the prior on the parameters of interest is via Monte Carlo
$\operatorname{esin} \omega$ \& ecos ω

$\mathbf{h}=$ RandomVariate [UniformDistribution [$\{-1,1\}$], $\mathbf{n}]$;
$\mathbf{k}=$ RandomVariate [UniformDistribution $[\{-1,1\}], \mathrm{n}]$;
$\mathbf{e}=\operatorname{Table}\left[\sqrt{\mathrm{h}[[i]]^{\wedge} 2+k[[i]]^{\wedge} 2},\{i, 1, n\}\right] ;$

Histogram[Select[e, \# < $1 \&]$]
on a related note, but beyond the scope of this priors lecture, the proposal function can be selected to minimize inter-parameter correlations. See Carter et al. (2008) for transits and Ford (2006) for RVs. Although, emcee would do this for free anyway

uninformative priors: log-uniform

for parameters which are scale-like and span orders-of-magnitude, a loguniform distribution is usually considered "more uninformative"
e.g. K, P, a_{R}, ρ^{*}
not $t_{\text {mid }}$ (can span a large range but is certainly a location-like parameter)

$$
f(x)=\frac{1}{x} \frac{1}{\log \left(x_{\max } / x_{\min }\right)}
$$

modified log-uniform can
extend to 0 , useful for K but not usually needed for P

$$
f(x)=\frac{1}{x+x_{0}} \frac{1}{\log \left(\left(x_{0}+x_{\max }\right) / x_{0}\right)}
$$

but be warned that
$f(x) \rightarrow \infty$ as $x \rightarrow 0$
so not useful if you have a parameter which extend to 0

how to...
 choose a prior

how to... implement a prior

log likelihood penalization

informative

conjugate

useful for analytic work, but not really used in practical exoplanet work

how to...
 choose a prior

how to... implement a prior

log likelihood penalization

informative

conjugate

useful for analytic work, but not really used in practical exoplanet work

informative priors: Bayesian learning

consider running MCMC on some initial data, D_{1}

now run MCMC on some new data, D_{2}

informative priors: observed distributions

someone shows you some RV data of a new planet...

so which solution do you think is more likely to be the truth?

informative priors: observed distributions

but you've seen hundreds of RV curves before, you know from experience that eccentric solutions are rarer than circular orbits
in fact the distribution of eccentricities of RV planets looks like this

we can encode the sage wisdom of the seasoned observer using an informative prior
informative priors: observed distributions

Beta distribution example
$\mathrm{P}(\mathrm{e})$ ~ Beta(0.867,3.03)
intrinsic distribution filtered though
the detection biases of RVs
> you can't just apply this to the sample of detected transiting planets though, transits have different detection biases

informative priors: observational bias

let's assume intrinsic is a Beta...
$\mathrm{P}(e)=\frac{(1-e)^{\beta-1} e^{\alpha-1}}{\mathrm{~B}[\alpha, \beta]} \quad \mathrm{P}(\omega)=\frac{1}{2 \pi}$
$\mathrm{P}(e, \omega)=\left(\frac{1}{2 \pi}\right)\left(\frac{(1-e)^{\beta-1} e^{\alpha-1}}{\mathrm{~B}[\alpha, \beta]}\right)$

(Kipping 2013)
geometric transit probability is...
$\mathrm{P}(\hat{b} \mid e, \omega)=\left(\frac{1}{a_{R}}\right)\left(\frac{1+e \sin \omega}{1-e^{2}}\right)$
(Barnes 2007, Burke 2008)

so eccentricity distribution conditioned on planet transiting is...
$\mathrm{P}(e, \omega \mid \hat{b})=\frac{\mathrm{P}(\hat{b} \mid e, \omega) \mathrm{P}(e, \omega)}{\int_{e=0}^{1} \int_{\omega=0}^{2 \pi} \mathrm{P}(\hat{b} \mid e, \omega) \mathrm{P}(e, \omega) \mathrm{d} e \mathrm{~d} \omega}$
(Kipping 2014)
$\mathrm{P}(e, \omega \mid \hat{b})=\left(\frac{\beta-1}{2 \pi \tilde{\gamma}_{1} \Gamma[\alpha+\beta]}\right)\left(\frac{1+e \sin \omega}{1-e^{2}}\right)\left(\frac{(1-e)^{\beta-1} e^{\alpha-1}}{\mathrm{~B}[\alpha, \beta]}\right)$

so... what did that do?

informative priors: observational bias

informative priors: observational bias

informative priors: observational bias

informative priors: observational bias

this gets even more tricky if we consider conditioning on both geometric bias and detection bias (e.g. apoapsis transits are longer => more detectable)

(Kipping \& Sandford 2016)
detection bias suppresses observational bias towards periapsis transits

also: we don't know what observational bias of RVs are!! (stay tuned via Chen \& Kipping)

informative priors: observational bias

distribution of X from detection method Y
 detection method Y

treat as a prior for $P(X)$ for analyzing data from detection method Y
treat as a prior for $P(X)$ for analyzing data from detection method Z

how to... choose a prior

log likelihood penalization

Bayesian
learning
check priors on key parameters via Monte Carlo
uninformative
log-uniform for parameters
scaling orders-of-magnitude
uniform, think about boundary conditions

how to... implement a prior

inverse transform sampling

how to... choose a prior

check priors on key parameters via Monte Carlo

Bayesian observational
learning
experience
informative
observational biases between
detection techniques

conjugate

useful for analytic work, but not really used in practical exoplanet work
uninformative
log-uniform for parameters
scaling orders-of-magnitude

how to... implement a prior

\author{

log likelihood penalization

}
inverse transform sampling

implementing priors: log-like penalization

$$
\begin{aligned}
\mathrm{P}(\mathbb{\Theta} \mid \mathcal{D}, \mathscr{M}) & \propto \mathrm{P}(\mathcal{D} \mid \mathbf{\Theta}, \mathscr{M}) \mathrm{P}(\mathbf{\Theta} \mid \mathscr{M}) \\
\mathscr{P} & \propto \mathscr{L} \pi \\
\log \mathscr{P} & \propto \log (\mathscr{L} \pi) \quad \begin{array}{c}
\text { log probabilities more } \\
\text { numerically stable }
\end{array} \\
\log \mathscr{P} & \propto \log \mathscr{L}+\log \pi
\end{aligned}
$$

so just add on log(prior probability)
can think of as being loglike penalization

implementing priors: log-like penalization

example: a normal distribution prior, $N(\mu, \sigma)$
$\pi(x)=\frac{\exp \left(-1 / 2(x-\mu)^{2} / \sigma^{2}\right)}{(2 \pi)^{1 / 2} \sigma}$
$\log \pi=-1 / 2 \log (2 \pi)-1 / 2 \log \left(\sigma^{2}\right)-1 / 2(x-\mu)^{2} / \sigma^{2}$
unless you want the evidence, can ignore constants $\log \pi=-1 / 2(x-\mu)^{2} / \sigma^{2}$
(highest prior probability occurs when $x=\mu$, as expected)

how to... choose a prior

how to... implement a prior

uniform, think about boundary conditions
check priors on key parameters via Monte Carlo uninformative
log-uniform for parameters scaling orders-of-magnitude

Bayesian observational
learning
experience
informative
observational biases between
detection techniques
conjugate
useful for analytic work, but not really used in practical exoplanet work
log likelihood penalization
just need to know pdf of prior
inverse transform sampling

implementing priors: inverse sampling

accepted jumps have to be a
i) high \mathscr{L} ii) high π
everytime we compute logn and make essentially blind jumps
but a more elegant solution is sometimes possible, by drawing a sample directly from the prior
drawing a random.normal() won't work though, as we need to "walk" in the parameter in order to build a Markov chain
this is possible with inverse
transform sampling
a
$a_{\max }$
implementing priors: inverse sampling

$$
F(x)=\int_{-\infty}^{x} f\left(x^{\prime}\right) d x^{\prime}
$$

implementing priors: inverse sampling

but is just random samples, does not constitute walking

implementing priors: inverse sampling

but it's fairly straight forward to just walk in the
$F(x) \quad F(x)$ space, and convert into a x sample

in the limit of no likelinood, Markov chain will be a uniform chain in $F(x)=>$ normal dist in x, as required

implementing priors: inverse sampling

inverse transform sampling is optimally efficient for exploring the prior volume
easy to implement for standard 1D distributions
because of this, some Bayesian inference packages
sample from the priors
exclusively in this way e.g.
MultiNest (Feroz 2008,2009)
but, 2D and non-standard distributions (that one might derive when doing observational priors) can be intractable

how to...
 choose a prior

how to... implement a prior

uniform, think about boundary conditions
check priors on key parameters via Monte Carlo uninformative
log-uniform for parameters scaling orders-of-magnitude

Bayesian observational
learning experience
informative
observational biases between
detection techniques

conjugate

useful for analytic work, but not really used in practical exoplanet work

log likelihood penalization

just need to know pdf of prior
optimally efficient for exploring prior volume, default for MultiNest
inverse transform sampling
non-standard and >1D
distributions can be intractable

how to...
 choose a prior

how to... implement a prior

uniform, think about boundary conditions
check priors on key parameters via Monte Carlo uninformative
log-uniform for parameters
scaling orders-of-magnitude

Bayesian observational
learning
experience
informative
observational biases between
detection techniques
conjugate
useful for analytic work, but not really used in practical exoplanet work

log likelihood penalization

just need to know pdf of prior
optimally efficient for exploring prior volume, default for MultiNest
inverse transform sampling
non-standard and >1D
distributions can be intractable

transits

(Foreman-Mackey+ 2013)
P ~ log-uniform
$\mathrm{t}_{\text {mid }} \sim$ uniform
$p=R_{p} / R_{*} \sim$ uniform or log-uniform
b or $\cos (i) \sim$ uniform
$a / R *$ or $\rho^{*} \sim$ log-uniform
(Kipping 2014; Kipping \& Sandford 2016)
e ~ Beta corrected \& w ~ uniform
(Ford 2006)
or $e^{1 / 2}$ sinw $\& e^{1 / 2} \operatorname{cosw} \sim$ uniform
(Kipping 2013b/2016)
$\mathrm{q}_{1} / \mathrm{q}_{2}$ or $\alpha_{\mathrm{h}} / \alpha_{\mathrm{r}} / \alpha_{\theta} \sim$ uniform
(Ford \& Gregory 2007, Balan \& Lahav 2008)
K ~ modified log-uniform
if following up a known transiter
or K~ uniform to -ve
(Ford \& Gregory 2007, Balan \& Lahav 2008)
s ~ modified log-uniform
be warned that tconj \ddagger tmid for e>0
$t_{\text {conj }} \sim$ uniform
not the "right" answer, just my personal recommendations, although I would always think about the specifics of my problem!

extra slides on limb darkening

$$
I(\mu)=1-u_{1}(1-\mu)-u_{2}(1-\mu)^{2}
$$

1] everywhere positive: $I(\mu)>0$

$$
\begin{aligned}
& q_{1}=\left(u_{1}+u_{2}\right)^{2} \\
& q_{2}=1 / 2 u_{1}\left(u_{1}+u_{2}\right)^{-1}
\end{aligned}
$$

2] monotonically decreasing form surface to limb: $\mathrm{dl} / \mathrm{d} \mu>0$
Kipping (2013b)

$$
v_{1}=q_{1}^{1 / 2} q_{2} \quad \text { thanks computer }
$$

$$
v_{2}=1-q_{1}^{1 / 2} \quad \text { games! }
$$

$$
I(\mu)=1-u_{1}(1-\mu)-u_{2}(1-\mu)^{2}
$$

$I(\mu)=1-C_{1}\left(1-\mu^{1 / 2}\right)-C_{2}(1-\mu)-C_{1}\left(1-\mu^{3 / 2}\right)-C_{2}\left(1-\mu^{2}\right) \quad$ non-linear law
Sing (2010) argue that dropping the c_{1} term is motivated by Solar data (Neckel \& Labs 1994) and 3D stellar models (Bigot et al. 2006), which show that l(μ) varies smoothly at small μ, meaning that a $\mu^{1 / 2}$ term is superfluous

$$
I(\mu)=1-c_{2}(1-\mu)-c_{1}\left(1-\mu^{3 / 2}\right)-c_{2}\left(1-\mu^{2}\right)
$$

re-scale axes to push loci inside the unitary cube
then rotate the loci round aligning envelope with the

next again re-scale to inside the unitary cube then re-align cone's apex to y-axis

finally use standard method for sampling from a cone to re-parameterize into alpha

$$
\begin{aligned}
c_{2}= & \frac{\alpha_{h}^{1 / 3}}{12}(28(9-5 \sqrt{2}) \\
& +3 \alpha_{r}^{1 / 2}\left(-6 \cos \left(2 \pi \alpha_{\theta}\right)+\left(3+10 \sqrt{2} \sin \left(2 \pi \alpha_{\theta}\right)\right)\right), \\
c_{3}= & \frac{\alpha_{h}^{1 / 3}}{9}(-632+396 \sqrt{2} \\
& \left.+3 \alpha_{r}^{1 / 2}(4-21 \sqrt{2}) \sin \left(2 \pi \alpha_{\theta}\right)\right) \\
c_{4}= & \frac{\alpha_{h}^{1 / 3}}{12}(28(9-5 \sqrt{2}) \\
& +3 \alpha_{r}^{1 / 2}\left(6 \cos \left(2 \pi \alpha_{\theta}\right)+\left(3+10 \sqrt{2} \sin \left(2 \pi \alpha_{\theta}\right)\right)\right)
\end{aligned}
$$

94.4\% completeness

using the alpha parameterization, we draw the green samples, which encompass 94.4% of the total allowed region

97.3\% validity

due to slight modification of assuming a perfect cone, 97.3\% of the samples drawn using the alpha-parameterization satisfy the initial conditions

ensuring 100\% validity

the remaining 2.7% unphysical samples can be easily removed with a rejection algorithm check afterwards (this check is fully analytic!)

