Direct Imaging and Spectroscopy of Exoplanets with JWST

C. Beichman, for the NIRCam Team

Exo-Planets With JWST

NIRCAM Team Explores Broad Range of Exoplanet Science

- Imaging of known young planets (NIRCam with MIRI)
- Direct Spectroscopy of known planets (NIRCam team with NIRSpec and MIRI)
- Transit Spectroscopy of known planets (integrated program across all teams, instruments)
- Coronagraphic survey of young M stars (NIRCam and NIRISS/NRM)
- Observations of Coolest Brown Dwarfs (NIRCam team, NIRSPEC, MIRI, NIRISS/NRM)

JWST Coronagraphs Cover 2-15 um

- Ground-based 8-10 m ExAO systems have smaller WFE and better IWA (λ /D)
- JWST trades wavefront error (130nm WFE) and smaller aperture for stability (5-10 nm) and low IR background >1"

JWST Coronagraphs

Illustrative Spectra for HR8799c

Formation Mechanism Affects Planet Properties

- Initial conditions cause differences in (Radius, T_{eff}, Lumin) for ages <100 Myr and masses 1-10 MJup
 - Disk-instability: High Entropy, Hot Start
 - Core Accretion: Low, Entropy, Cold Start
- Can we recover physical and initial conditions?

NIRCam+ MIRI cover Young Planet Spectra

Filter Observations Can Recover Physical Conditions

Planning the NIRCam Imaging Program

- Use representative set of models for young planets (Spiegel and Burrows 2012)
- Run a sequence of Monte Carlo calculations selecting a range of filters and planet properties
 - Fix Target Age to specific value given we know distance and age of star (uncertain of course)
 - Assume detection at SNR from 5-25 based on noise model.
- Examine various sequences of NIRCam and MIRI filters to assess suite of filters needed to match input mass, Entropy, and model atmosphere.
- Assess quality of fit to planet parameters

Representative Planet Properties Input For Monte Carlo Analysis

Mass

Age

Initial Entropy

Luminosity (10^-6)

Radius (RJup)

Large Filter Set: 6 NIRCam + 2 MIRI

- 2 MIRI filters plus 6 NIRCam medium band filters: F1065C, F1140C, F210M, F250M, F300M, F335M, F360M, F430M, matched to features in spectra
- Analysis shows favorable retrieval wrt input models: mass within ±8%, entropy within ±0.8 kb/baryon. Atmosphere model > 70% of the time

Contour Maps of chi2=f(Mass, Entropy) for fixed ages. Target values and retrieved values are marked

Log Chi2. Mass 5.4 Age 84.4 S0 10.3Atm 3 FiltF1065CF1140CF210MF250MF300MF335MF360MF430M

5 NIRCam+2 MIRI Filter Set

- Remove F360M on shoulder of 5 μ m peak
 - F1065C,F1140C,F210M,F250M,F300M,F335M,F430M
- Performs slightly more poorly than 6+2 set
 - Still favorable retrieval wrt input models. Fit mass within ±9%, Initial entropy within ±0.95 kb/ baryon. Correct atmosphere model retrieved > 65% of time

Minimum MIRI+NIRCam

- Two NIRCam +2 MIRI filters:
 F356W,F444W, F1065C, F1140C
- Broader distribution: ±13% in mass ±1.3 kb/baryon entropy; correct atmosphere, 60%

Overall conclusions

- From breadth of wavelengths (2-15 µm) we can calculate Luminosity and Temperature quite accurately → Radius to <5% → hot/cold start discrimination (Initial Entropy)
- Discriminating between various atmospheric models (composition, clouds) more challenging, but higher SNR may be possible for widely separated planets

Planned Coronagraphic Observations

- 5 known planetary systems w. the NIRCam and MIRI
 - Recover physical and atmospheric properties, e.g. Mass, Radius, Teff, Luminosity, Clouds, Composition (NH3 from MIRI), Initial Entropy
- Search for planets <0.1 MJup
- Targets in angular separation range 0.4"-3", masses<13 M_{Jup}

Host Name	Separation (")	Orbit (AU)	Distance (pc)	Spec Туре	Age (Myr)	Planet Mass (MJup)
GJ 504b	2.42	43.5	17.95	G0 V	160.00	4
2MASS J1207	0.88	46	52.4	M8	8.00	4
HR 8799b	1.70	68	39.94	FOV	50?	7
HR 8799d	0.95	38	39.94	FOV	50?	10
HD 95086b	0.61	55.7	91.57	A8 III	17	5
51 Eri b	0.45	13.2	29.4	FOIV	20.00	2

Searching for Lower Mass Companions

- Are multiple systems like HR8799 exception or rule?
- JWST sensitivity will probe for Saturn masses > ~1" at F322W2 and F444W

Direct Spectroscopy

 At modest separations (3"-10") use NIRSpec IFU to obtain R~1,000 spectra of known planets

–Understand scattered light, etc
–Tools for speckle suppression tools

For separations >10" use slit/
 IFU for R~3,000 spectra

NIRSpec IFU Spectroscopy (3"-10") FW Tau, DH Tau, HD 106906 NIRSpec for Planets (>10") Fomalhaut-b, WD 0806-66, GU Psc

Integrated MIRI + NIRCam Transit Program Targets Warm (T ~600 – 1000 K) Planets

- $2.5 11 \,\mu\text{m}$ spectral region covers CH₄ (MIRI & NIRCam), CO & CO₂ (NIRCam), NH₃ (MIRI)
- Sample 20 M_{\oplus} 180 M_{\oplus} (Neptune to 2x Saturn)
- Emission spectra probe atmosphere (P < ~1 bar) and constrain [Fe/H]
- Transmission spectra may see through clouds (λ >2 μ m)
- NIRISS and telescope teams have additional targets

Illustrative NIRCam+MIRI Targets

									NCam	MIRI		
Name	K(mag)	$T_{\rm eq}({\rm K})^{\rm a}$	$R_p(R_{\oplus})$	$M_p(M_\oplus)$	T_{14} (hr)	$\operatorname{Geometry}^{b}$	Visits	Mode	T(hr) ^c	T(hr) ^c	nIR? ^d	Comment
HD 189733 b	5.5	1200	12.5	360	1.82	EMIS	1	NC F322W2	7.3		?	Still Evaluating
HD 189733 b	5.5	1200	12.5	360	1.82	EMIS	1	NC F444W	7.3		?	Still Evaluating
WASP-80 b	8.4	850	10.7	180	2.11	EMIS	1	NC F322W2	8.3		N?	Similar to WASP-67b
WASP-80 b	8.4	850	10.7	180	2.11	EMIS	1	NC F444W	8.3		N?	Similar to WASP-67b
WASP-80 b	8.4	850	10.7	180	2.11	EMIS	1	MIRI LRS		8.3	N?	Similar to WASP-67b
WASP-39 b	10.2	1120	14.2	90	2.80	EMIS	1	NC F322W2	10.7		?	Similar to HAT-P-19b
WASP-39 b	10.2	1120	14.2	90	2.80	EMIS	1	NC F444W	10.7		?	Similar to HAT-P-19b
WASP-39 b	10.2	1120	14.2	90	2.80	EMIS	1	MIRI LRS		10.7	?	Similar to HAT-P-19b
HAT-P-12 b	10.1	960	10.7	67	2.34	EMIS	1	NC F322W2	9.1		?	Low Spitzer S/N
HAT-P-12 b	10.1	960	10.7	67	2.34	EMIS	1	NC F444W	9.1		?	Low Spitzer S/N
HAT-P-12 b	10.1	960	10.7	67	2.34	EMIS	1	MIRI LRS		9.1	?	Low Spitzer S/N
HAT-P-12 b	10.1	960	10.7	67	2.34	TRANS	1	NC F322W2	9.1		Y	Promising retrieval
HAT-P-12 b	10.1	960	10.7	67	2.34	TRANS	1	NC F444W	9.1		Y	Promising retrieval
GJ 436 b	6.1	700	4.2	22	0.76	EMIS	3	NC F322W2	10.8		Ν	Look for CH ₄ ?
GJ 436 b	6.1	700	4.2	22	0.76	EMIS	3	NC F444W	10.8		Ν	Look for CO?
GJ 436 b	6.1	700	4.2	22	0.76	EMIS	3	MIRI LRS		10.8	Ν	CH ₄ ; too bright?
HAT-P-26 b	9.6	1000	6.2	19	2.46	TRANS	1	NC F322W2	9.5		?	Possible H ₂ O
HAT-P-26 b	9.6	1000	6.2	19	2.46	TRANS	1	NC F444W	9.5		?	Possible H ₂ O
HAT-P-26 b	9.6	1000	6.2	19	2.46	TRANS	1	MIRI LRS		9.5	?	Possible H ₂ O
GJ 1214 b	8.8	600	2.6	6.5	0.88	TRANS	2	NC F322W2	7.9		Ν	Look for abs
GJ 1214 b	8.8	600	2.6	6.5	0.88	TRANS	2	NC F444W	7.9		Ν	Look for abs
GJ 1214 b	8.8	600	2.6	6.5	0.88	TRANS	2	MIRI LRS		7.9	Ν	Look for abs
									-			
TOTAL									146 ^f	56.3		

M Star Imaging Survey

- Kepler & microlensing (?)
 →abundant small planets orbiting
 M stars across range in AU
- NIRCam coronagraphy can reach Saturn - Uranus masses for <150 Myr planets within 15 pc.
- NIRCam probes 10-15 AU (CO snow line) favored for ice giants
- Survey 10~15 objects at F322W2 & F444W (best GAIA targets)

Dist	Med Spec	Min Age	Med Age	MaxAge	WISE
(pc)	Туре	(Myr)	(Myr)	(Myr)	W2 (Mag)
16.25	M4	24	150	440	7.26

Nearby T/Y Dwarfs

- Analogs to 5-10 M_{Jup}
 coronagraphic companions
 - –Teff <500 K (WISE, HST, ground based SEDs)
 - -Parallax distances: 2.2(!)-15 pc
 - Ages ~ 3-5 Gyr from space vel's
 Model Masses ~5-10 M_{Jup}
- Runaway planets or runts of stellar litter? Tip of microlensing iceberg?
 –Possibly lower metallicity than "planets" formed in disks

Nearby Y-T Dwarfs

- 10 closest & coldest.
 - BD-BD or BD-WD if possible
 - –~1 rapid rotator for Wx
- High SNR R~1,000-3,000 spectroscopy at 3-15 μm
- Use JWST spatial resolution & sensitivity for companion search –NIRCam: 1.3 AU at 10 pc –NIRISS/NRM: 0.65 AU at 10 pc (Δmag~5–ΔMass~x3)

JWST Spectra Will Force Better Models

Existing models have great problems fitting mid- and near-IR for coldest sources. Clouds? Non-equilibrium chemistry? Dust absorption?

Illustrative Target List for Y/T BD Program

			Spitz	Spitz			
	J	Н	Ch1	Ch2	Dist	Teff	Spec
Name	(mag)	(mag)	(mag)	(mag)	(pc)	(K)	Туре
WISE J0855-0714	26.5	27	16.2	13.7	2.2	250	>Y2
WD 0806-661B*	25.7*		19.6	13.9	19	275	Y2
WISE J1828+2650		22.5	16.9	14.3	9.4	350	Y2
WISE J0647-6232	22.85	23.31	17.9	15.2	10.8	375	Y1
WISE J0535-7500	22.13		17.8	14.9	13.5	475	Y1
WISE J1541-2250	21.63	22.09	16.7	14.2	5.7	350	Y0.5
WISE J2209+2711	22.86	22.39	17.8	14.7	6.8	350	YO
WISE J0811-8051	19.90	19.86	16.8	14.3	10.2	400	T9.5
WISE J2102-4429	18.34	18.58	16.3	14.1	10.8	450	Т9
WISE J0836-1859	18.99	19.5	16.8	15.1	49	662	T8P
0.5" Y/T Binary		A 17.8	16.4	13.0		400	
WISE J0458+6434		B 18.8			11	350	T9/Y0

*Also observed in exoplanet program (Jmag in (F110W))

Illustrative JWST Sensitivity

Illustrative Integration Times for NIRSpec Observations

Grating	Resl'n	tau	λ (μm)	Mag		SNR
[G140M]	1000	900	1.65	20		14
[G235]	1000	900	3	16		20
[G39 5M]	1000	900	4.6	13		413
[G395H]	2700	100	4.6	13		135
Prism	100	300	1.65	21		34
		300	3	17		76
		300	4.6	14		197
Illust	rative Integ	ration Tir	nes for MI	RI Observa	tio	ns
Filter	Resl'n	tau(sec)	λ (μm)	Mag		SNR
F1130	16	100	11.3		15	16
F1500	5	200	15.0		15	12
F1800	6	1000	18.0		15	9
MIRI/LRS	200	100	7.5		15	24

Illustrative NIRCam Program

Торіс	# Objects	NIRCam Request (hr)	Instruments
Coronagraphic Imaging	5	50	NIRCam & MIRI
Direct Spectroscopy	5-8	20	NIRSpec MIRI
Transit Spectroscopy	10	125	
M star survey	15	50	NIRCam
Y Dwarfs	10	40	NIRSpec &MIRI
Total		250	

JWST Cycle 1 ERS Proposal Schedule

Conclusions

- JWST will find and characterize exoplanets
 - Young Saturns to Young Jupiters via direct imaging and spectra
 - Super Earths to Jupiters via transit spectroscopy
- Use late T and Y dwarfs as analogs of nearby young exoplanets to assess physical conditions, composition & perhaps different formation paths
- The exoplanet community has the opportunity to use a major portion (25%!) of JWST to make dramatic advances

Start now to write great proposals based on the *best* teams, targets, models, and statistical methods. And don't forget to thank the Sagan Summer Workshop