D. MAWET, JULY 2016 SURVEY OF DIRECT IMAGING: TECHNIQUES AND RESULTS

DIRECT IMAGING OF EXOPLANETS

- Direct imaging: taking actual pictures of exoplanets
- Demographics at young ages and large separations
- Direct detection enables detailed characterization:
 - Orbital evolution, dynamical interactions
 - Remote sensing of their atmospheres
 - Formation and disk interaction

DIRECT IMAGING OF EXOPLANETS

- Direct imaging: taking actual pictures of exoplanets
- Demographics at young ages and large separations
- Direct detection enables detailed characterization:
 - Orbital evolution, dynamical interactions
 - Remote sensing of their atmospheres
 - Formation and disk interaction

HR8799'S 4 GIANT PLANETS

Marois et al. 2008 (2010)

 β Pictoris system (Lagrange et al. 2009)

N

 $E \triangleleft$

DISKS AS SIGNPOSTS OF PLANETS

Schneider et al. 2014 (HST-STIS)

DIRECT IMAGING OF EXOPLANETS

- Direct imaging: taking actual pictures of exoplanets
- Demographics at young ages and large separations
- Direct detection enables detailed characterization:
 - Orbital evolution, dynamical interactions
 - Remote sensing of their atmospheres
 - Formation and disk interaction

DIRECT IMAGING OF EXOPLANETS

- Direct imaging: taking actual pictures of exoplanets
- Demographics at young ages and large separations
- Direct detection enables detailed characterization:
 - Remote sensing of their atmospheres
 - Orbital evolution, dynamical interactions
 - Formation and disk interaction

Bonnefoy et al. 2014

Konopacky et al. 2013

MEASURE PLANET SPIN

Snellen et al. 2014

DIRECT IMAGING OF EXOPLANETS

- Direct imaging: taking actual pictures of exoplanets
- Demographics at young ages and large separations
- Direct detection enables detailed characterization:
 - Remote sensing of their atmospheres
 - Orbital evolution, dynamical interactions
 - Formation and disk interaction

Konopacky et al. 2016

Konopacky et al. 2016

BETA PICTORIS B ORBITAL MOTION MOVIE

M. MILLAR-BLANCHAER et al. (2015)

Credit: M. Millar-Blanchaer (Dunlap Institute) & F. Marchis (SETI Institute)

DIRECT IMAGING OF EXOPLANETS

- Direct imaging: taking actual pictures of exoplanets
- Demographics at young ages and large separations
- Direct detection enables detailed characterization:
 - Remote sensing of their atmospheres
 - Orbital evolution, dynamical interactions
 - Formation and disk interaction

INTERACTION WITH HOST DISK

β Pictoris b Mawet, Absil, Milli et al. 2013

Lagrange et al. 2012

Where are the planets?

Let's zoom in adjust contrast

All the point sources in the field of view are stars!

Stars are bright!

Sirius A

Sirius B (white dwarf) 10,000 x fainter !

 \bigcirc

"Imaging exoplanets directly is equivalent to spotting a tiny ember flying off a blazing campfire 200 km away, while looking through a dirty window."

Angular separation: 0".1, or 0.5 µrad

Planet to star contrast:

10⁻⁶ (hot young giant planets), 10⁻¹⁰ Earth-like planets around Solar-type stars

GIANT PLANET CONTRAST

Skemer et al. 2014

(VERY) PALE BLUE DOT

Taken on Feb 14, 1990, by Voyager 1 from 3.7 billion miles

10-10

4 PILLARS OF HIGH CONTRAST IMAGING

- Adaptive optics
- Coronagraphy
- Differential imaging
- Post-processing

 Know your star (age, L, distance, proper motion, etc.)!

4 PILLARS OF HIGH CONTRAST IMAGING

- Adaptive optics
- Coronagraphy
- Differential imaging
- Post-processing

 Know your star (age, L, distance, proper motion, etc.)!

ADAPTIVE OPTICS 101

ADAPTIVE OPTICS IN ACTION

The Galactic Center at 2.2 microns

4 PILLARS OF HIGH CONTRAST IMAGING

- Adaptive optics
- Coronagraphy
- Differential imaging
- Post-processing

 Know your star (age, L, distance, proper motion, etc.)!

CREATING ARTIFICIAL ECLIPSES

CORONAGRAPHY, BERNARD LYOT 1930

"The rareness of total eclipses of the Sun, their short duration and the distances one has to travel to observe them have, for more than half a century, led astronomers and physicists to seek for a method which enables them to study the corona at any time."

LYOT'S CORONAGRAPH

SOLAR CORONA IN 1930S WITH LYOT'S CORONAGRAPH!

DEFINITION AND TERMINOLOGY

- "A coronagraph is an optical device designed to suppress (or strongly attenuate) the onaxis coherent starlight while allowing the off-axis planet (or circumstellar disk) light to transmit through."
- Important definitions:
 - **Contrast**: The ratio of the peak of the stellar point spread function to the noise at the planet location.
 - Inner Working Angle: The smallest angle on the sky at which the needed contrast is achieved and the planet is reduced by no more than 50% relative to other angles.
 - **Throughput**: The ratio of the open telescope area remaining after high-contrast is achieved.
 - **Bandwidth**: The wavelengths at which high contrast is achieved.
 - **Sensitivity**: The degree to which contrast is degraded in the presence of aberrations.

LYOT CORONAGRAPH CONT'D: STEP BY STEP

GAMUT OF CORONAGRAPHY

DO YOU SEE THE PLANET AFTER THE CORONAGRAPH? NO?

Red pill: image plane wavefront sensing & control Blue pill: differential imaging

I'll have both!

WAVEFRONT CONTROL & CORONAGRAPH IN ACTION

4 PILLARS OF HIGH CONTRAST IMAGING

- Adaptive optics
- Coronagraphy
- Differential imaging
- Post-processing

 Know your star (age, L, distance, proper motion, etc.)!

THE PLANET IS 10-1000 FAINTER THAN THE SPECKLE NOISE FLOOR

ROLL TELESCOPE BY 45°

SUBTRACT BOTH IMAGES

Angular differential imaging (ADI)

ADI AT SMALL ANGLES (IWA)

EXOPLANET SIGNAL SELF-SUBTRACT

SPECTRAL DIFFERENTIAL IMAGING (SDI)

- Requires dual beam imagers or integral field spectrographs
 = hyperspectral imaging
- \bullet Speckles scale as λ
- Real objects don't move
- Suffers from self subtraction at small IWA too

REFERENCE STAR DIFFERENTIAL IMAGING (RDI)

- Observe another similar star close in time, with as little telescope motion as possible
- Polarization differential imaging (PDI)
 - ➡ NO geometrical limitations at small IWA

4 PILLARS OF HIGH CONTRAST IMAGING

- Adaptive optics
- Coronagraphy
- Differential imaging
- Post-processing

 Know your star (age, L, distance, proper motion, etc.)!

OPTIMAL WAY OF COMBINING DATA

See Laurent's talk!

MACHINE LEARNING?

- For a given instrument, during its 10+ year lifetime, a library of 1000s realizations of reference images can be assembled
- Using PCA-like methods, a low-rank approximation of the PSF can be built
- This method can be very powerful as it is not affected by the self-subtraction bias of ADI, and SDI

EXAMPLE: LEARNING THE LOW-RANK APPROXIMATION FROM A LIBRARY OF REFERENCE IMAGES

4 PILLARS OF HIGH CONTRAST IMAGING

- Adaptive optics
- Coronagraphy
- Differential imaging
- Post-processing

•

Know your star (age, L, distance, proper motion, etc.)!

DIRECT IMAGING SENSITIVITY DRIVERS

Bowler B. 2016

INFLUENCE OF STAR SAMPLE ON DIRECT IMAGING SENSITIVITY

Bowler B. 2016

RESULTS OF FIRST GENERATION DIRECT IMAGING SURVEYS

Reference	Telescope	Instr.	Mode	Filter	FoV ("×")	#	SpT	Age (Myr)
Chauvin et al. (2003)	ESO3.6m	ADONIS	Cor-I	H, K	13×13	29	GKM	≲50
Neuhäuser et al. (2003)	NTT	Sharp	Sat-I	Κ	11 × 11	23	AFGKM	≲50
	NTT	Sofi	Sat-I	Н	13×13	10	AFGKM	≲50
Lowrance et al. (2005)	HST	NICMOS	Cor-I	Н	19×19	45	AFGKM	10-600
Masciadri et al. (2005)	VLT	NaCo	Sat-I	H, K	14×14	28	KM	≲200
Biller et al. (2007)	VLT	NaCo	SDI	Η	5×5	45	GKM	≲300
	MMT		SDI	Η	5×5	_	_	_
Kasper et al. (2007)	VLT	NaCo	Sat-I	L'	28×28	22	GKM	≲50
Lafrenière et al. (2007)	Gemini-N	NIRI	ADI	Η	22×22	85		10-5000
Apai et al. (2008) ^{<i>a</i>}	VLT	NaCo	SDI	Н	3×3	8	FG	12-500
Chauvin et al. (2010)	VLT	NaCo	Cor-I	H, K	28×28	88	BAFGKM	≲100
Heinze et al. (2010a,b)	MMT	Clio	ADI	L', M	15.5×12.4	54	FGK	100-5000
Janson et al. (2011)	Gemini-N	NIRI	ADI	H, K	22×22	15	BA	20-700
Vigan et al. (2012)	Gemini-N	NIRI	ADI	H, K	22×22	42	AF	10-400
	VLT	NaCo	ADI	H, K	14×14	_	_	_
Delorme et al. (2012)	VLT	NaCo	ADI	L'	28×28	16	М	≲200
Rameau et al. (2013c)	VLT	NaCo	ADI	L'	28×28	59	AF	≲200
Yamamoto et al. (2013)	Subaru	HiCIAO	ADI	H, K	20×20	20	FG	125 ± 8
Biller et al. (2013)	Gemini-S	NICI	Cor-ASDI	Н	18×18	80	BAFGKM	≲200
Brandt et al. (2013)	Subaru	HiCIAO	ADI	Η	20×20	63	AFGKM	≲500
Nielsen et al. (2013)	Gemini-S	NICI	Cor-ASDI	Η	18×18	70	BA	50-500
Wahhaj et al. $(2013)^a$	Gemini-S	NICI	Cor-ASDI	Н	18×18	57	AFGKM	~100
Janson et al. $(2013)^a$	Subaru	HiCIAO	ADI	Н	20×20	50	AFGKM	≲1000

OCCURRENCE RATES FROM FIRST GENERATION SURVEYS

Bowler B. 2016

DIRECT IMAGING DISCOVERIES

Directly Imaged Planets and Planet Candidates with Masses $\lesssim 13 M_{\rm Jup}$									
Name	$\begin{array}{c} \text{Mass} \\ (M_{\text{Jup}}) \end{array}$	$\begin{array}{c} \text{Luminosity} \\ (\log (L_{\text{Bol}}/L_{\odot})) \end{array}$	Age (Myr)	Proj. Sep. (AU)	NIR SpT	Orbital Motion?	Pri. Mult.	Pri. Mass (M_{\odot})	References
Close-in Planets (<100 AU)									
51 Eri b	2 ± 1	-5.6 ± 0.2	23 ± 3	13	T4.5–T6	Yes	S	1.75	1, 2, 3
HD 95086 b	5 ± 2		17 ± 4	56		No	\mathbf{S}	1.6	4, 5
HR 8799 b	5 ± 1	-5.1 ± 0.1	40 ± 5	68	$\sim L/Tpec$	Yes	\mathbf{S}	1.5	6–9
LkCa 15 b^{a}	6 ± 4		2 ± 1	20		Yes	\mathbf{S}	1.0	10 - 13
HR 8799 c	7 ± 2	-4.7 ± 0.1	40 ± 5	38	$\sim L/Tpec$	Yes	\mathbf{S}	1.5	6 - 9
HR 8799 d	7 ± 2	-4.7 ± 0.2	40 ± 5	24	\sim L7pec	Yes	\mathbf{S}	1.5	6, 8, 9
HR 8799 e	7 ± 2	-4.7 ± 0.2	40 ± 5	14	\sim L7pec	Yes	\mathbf{S}	1.5	8, 9, 14
β Pic b	12.7 ± 0.3	-3.78 ± 0.03	23 ± 3	9	L1	Yes	\mathbf{S}	1.6	15 - 18
Planetary-Mass Companions on Wide Orbits (>100 AU)									
WD 0806-661 b	7.5 ± 1.5		2000 ± 500	2500	Y?	No	S	2.0 ^b	19-21
Ross $458 c$	9 ± 3	-5.62 ± 0.03	150 - 800	1190	T8.5pec	No	В	0.6, 0.09	22 - 26
ROXs 42B b	10 ± 4	-3.07 ± 0.07	3 ± 2	140	L1	Yes	В	0.89, 0.36	27 - 31
HD 106906 b	11 ± 2	-3.64 ± 0.08	13 ± 2	650	L2.5	No	В	1.5	32, 33
GU Psc b	11 ± 2	-4.75 ± 0.15	120 ± 10	2000	T3.5	No	\mathbf{S}	0.30	34
CHXR 73 b	13 ± 6	-2.85 ± 0.14	2 ± 1	210	$\geq M9.5$	No	\mathbf{S}	0.30	35
SR12 C	13 ± 2	-2.87 ± 0.20	3 ± 2	1100	M9.0	No	В	1.0, 0.5	29, 36
TYC 9486-927-1 b	12 - 15		10 - 45	4500	L3	No	\mathbf{S}	0.4	37, 38
Planetary-Mass Companions Orbiting Brown Dwarfs									
2M1207–3932 b	5 ± 2	-4.68 ± 0.05	10 ± 3	41	L3	No	S	0.024	39-42, 9
2M0441+2301 Bb	10 ± 2	-3.03 ± 0.09	2 ± 1	1800/15	L1	Yes	B/S	0.2,0.018	43-45

TABLE 1

DIRECT IMAGING DISCOVERIES

1RXS J1609–2105 B	14 ± 2	-3.36 ± 0.09	11 ± 2	330	L2	No	\mathbf{S}	0.85	46 - 49
2M0103–5515 b	13 - 35	-3.49 ± 0.11	45 ± 4	84		Yes	В	0.19, 0.17	50, 51, 9
2M0122–2439 B	12 - 27	-4.19 ± 0.10	120 ± 10	52	L4	No	\mathbf{S}	0.4	51, 52
2M0219–3925 B	14 ± 1	-3.84 ± 0.05	45 ± 4	156	L4	No	\mathbf{S}	0.11	53
AB Pic B	13 - 30	-3.7 ± 0.2	45 ± 4	250	LO	No	\mathbf{S}	0.95	54, 55, 39
CFBDSIR J1458+1013 B	5 - 20	-6.74 ± 0.19	1000 - 5000	2.6	Y0:	Yes	\mathbf{S}	0.01 – 0.04	56, 57
DH Tau B	8 - 22	-2.71 ± 0.12	2 ± 1	340	M9.25	No	\mathbf{S}	0.5	58, 35, 13
Fomalhaut b	≤ 2		440 ± 40	119		Yes	\mathbf{S}	1.92	59 - 62
FU Tau B	~ 16	-2.60	2 ± 1	800	M9.25	No	\mathbf{S}	0.05	63
FW Tau b	$\sim \! 10 - \! 100$		2 ± 1	330	pec	No	В	0.3, 0.3	27, 29, 64
G196-3 B	12 - 25	-3.8 ± 0.2	20 - 85	400	L3	No	\mathbf{S}	0.43	65-67, 51, 42
GJ 504 b	3 - 30	-6.13 ± 0.03	100 - 6500	44	T:	Yes	\mathbf{S}	1.16	68 - 71
GJ 758 B	10 - 40	-6.1 ± 0.2	1000-6000	29	T8:	Yes	\mathbf{S}	1.0	72 - 75
GSC 6214-210 B	15 ± 2	-3.1 ± 0.1	5 - 10	320	M9.5	No	\mathbf{S}	0.9	48, 29, 76, 77
HD 100546 b	$\sim 10 \pm 5$		5 - 10	53		No	\mathbf{S}	2.4	78 - 80
HD 100546 c	$<\!20$		5 - 10	13		No	\mathbf{S}	2.4	81
HD 203030 B	12 - 30	-4.64 ± 0.07	130 - 400	490	L7.5	Yes	\mathbf{S}	0.95	82, 83
HN Peg B	12 - 31	-4.77 ± 0.03	300 ± 200	800	T2.5	No	\mathbf{S}	1.07	84, 85
κ And b	12 - 66	-3.76 ± 0.06	40 - 300	55	L1	No	\mathbf{S}	2.8	85 - 87
LkCa 15 c ^a	<10		2 ± 1	15		Yes	\mathbf{S}	1.0	12, 13
LkCa 15 d	<10		2 ± 1	18		Yes	\mathbf{S}	1.0	12, 13
LP 261-75 B	12 - 26	-4.43 ± 0.09	100 - 200	450	L4.5	No	\mathbf{S}	0.22	88, 51
ROXs12 B	16 ± 4		8 ± 3	210		Yes	\mathbf{S}	0.9	27, 31
SDSS2249+0044 A	12 - 60	-3.9 ± 0.3	20 - 300	17/2600	L3	No	S/S		89
SDSS2249+0044 B	8 - 52	-4.2 ± 0.3	20 - 300	17	L5	No	\mathbf{S}	0.03	89
VHS1256–1257 b	10 - 21	-5.05 ± 0.22	150 - 300	102	L7	No	В	0.07, 0.07	90, 91
WISE J0146+4234 B	4 - 16	-7.01 ± 0.22	1000-10000	1	Y0	Yes	\mathbf{S}	0.005 - 0.016	92
WISE J1217+1626 B $$	5 - 20	-6.79 ± 0.18	1000 - 5000	8	Y0	No	\mathbf{S}	0.01 – 0.04	93

Candidate Planets and Companions Near the Deuterium-Burning Limit

Bowler B. 2016

SECOND GENERATION DIRECT IMAGING FACILITIES

2ND GENERATION: 1ST GENERATION ON STEROIDS

- More DOF, faster AO
- Better optics => excellent wavefront quality
- Optimized for stability => slow thermal & mechanical drifts
- Speckle control strategies are fully built in!

Instrument	Telescope	AO	Wavelength	Ang. res.	Coronagraph
			(μm)	(mas)	
P3K-P1640/SDC	Hale 200"	64-SH	1.1 - 2.4	45-90	APLC/VC
SPHERE	VLT	40-SH	0.5 - 2.4	15 - 55	Lyot/APLC/FQPM
GPI	Gemini South	48-SH	0.9 - 2.4	23-55	APLC
SCExAO	Subaru	14-C & 48-P	0.55 - 2.4	15 - 55	PIAA/SP/VC
MagAO-Clio2/VisAO	Magellan	25-Pyramid	0.55 - 5	18-160	Lyot(+APP)
LMIRCAM	LBT'	30-Pyramid	2 - 5	60 - 120	APP+VC

RECENT RESULT FROM GPI 51 Eri b

RECENT RESULT FROM SPHERE HD 131399Ab

THE FUTURE OF DIRECT

JAMES WEBB SPACE TELESCOPE

See Chas's talk on Friday!

WFIRST-CORONAGRAPH

See Nikole's talk on Friday!

TELESCOPES OF TOMORROW WILL BE BIGGER!

BIGGER IS BETTER!

BIOSIGNATURES AT LOW R

BIOSIGNATURES AT HIGH R

Wang J., Mawet D., Hu R., Benneke B. 2016, in prep

BIOSIGNATURE DECISION TREE

Shawn Domagal-Goldman et al. 2016, in prep

DOPPLER MAPPING OF GIANT PLANETS

Crossfield et al. 2014

"Somewhere, something incredible is waiting to be known."

-CARL SAGAN

"Somewhere, something incredible is waiting to be known." imaged